Influence of ZIF-67 Drying Temperatures on the Structure and Properties of PEBAX® MH-1657/ZIF-67 Mixed Matrix Membranes for Enhanced CO2/N2 Separation

This study synthesized mixed matrix membranes (MMMs) using PEBAX® MH-1657 and ZIF-67 with varying particle concentrations (1, 3, and 5 wt%) to assess permeability and selectivity. ZIF-67 nanoparticles were prepared using the solvothermal method with methanol and characterized. Permeation tests were...

Full description

Bibliographic Details
Main Authors: Paula S. Pacheco, Sônia Faria Zawadzki, Daniel Eiras
Format: Article
Language:English
Published: Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol) 2024-03-01
Series:Materials Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392024000100223&lng=en&tlng=en
Description
Summary:This study synthesized mixed matrix membranes (MMMs) using PEBAX® MH-1657 and ZIF-67 with varying particle concentrations (1, 3, and 5 wt%) to assess permeability and selectivity. ZIF-67 nanoparticles were prepared using the solvothermal method with methanol and characterized. Permeation tests were conducted at 10 and 15 bar using N2 and CO2. The analysis revealed ZIF-67 particles with an approximate diameter of 280 nm and confirmed characteristic sodalite peaks. The ideal CO2/N2 selectivity reached 67 (CO2 permeability = 132 ± 3.5 Barrer) at 15 bar. The impact of ZIF-67 varied with pressure and composition; at 10 bar, CO2/N2 selectivity decreased compared to pure PEBAX®; however, at 15 bar, the 1 wt% ZIF-67 membrane exhibited superior selectivity, surpassing Robeson's upper bound. The results indicate that ZIF-67 enhances the permeability and selectivity of PEBAX®, with superior performance observed at lower concentrations.
ISSN:1516-1439