CAT: computer aided triage improving upon the Bayes risk through ε-refusal triage rules

Abstract Background Manual extraction of information from electronic pathology (epath) reports to populate the Surveillance, Epidemiology, and End Result (SEER) database is labor intensive. Systematizing the data extraction automatically using machine-learning (ML) and natural language processing (N...

Full description

Bibliographic Details
Main Authors: Nicolas Hengartner, Leticia Cuellar, Xiao-Cheng Wu, Georgia Tourassi, John Qiu, Blair Christian, Tanmoy Bhattacharya
Format: Article
Language:English
Published: BMC 2018-12-01
Series:BMC Bioinformatics
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12859-018-2503-9
Description
Summary:Abstract Background Manual extraction of information from electronic pathology (epath) reports to populate the Surveillance, Epidemiology, and End Result (SEER) database is labor intensive. Systematizing the data extraction automatically using machine-learning (ML) and natural language processing (NLP) is desirable to reduce the human labor required to populate the SEER database and to improve the timeliness of the data. This enables scaling up registry efficiency and collection of new data elements. To ensure the integrity, quality, and continuity of the SEER data, the misclassification error of ML and NPL algorithms needs to be negligible. Current algorithms fail to achieve the precision of human experts who can bring additional information in their assessments. Differences in registry format and the desire to develop a common information extraction platform further complicate the ML/NLP tasks. The purpose of our study is to develop triage rules to partially automate registry workflow to improve the precision of the auto-extracted information. Results This paper presents a mathematical framework to improve the precision of a classifier beyond that of the Bayes classifier by selectively classifying item that are most likely to be correct. This results in a triage rule that only classifies a subset of the item. We characterize the optimal triage rule and demonstrate its usefulness in the problem of classifying cancer site from electronic pathology reports to achieve a desired precision. Conclusions From the mathematical formalism, we propose a heuristic estimate for triage rule based on post-processing the soft-max output from standard machine learning algorithms. We show, in test cases, that the triage rule significantly improve the classification accuracy.
ISSN:1471-2105