Optimization of Multiple Pathogen Detection Using the TaqMan Array Card: Application for a Population-Based Study of Neonatal Infection.
Identification of etiology remains a significant challenge in the diagnosis of infectious diseases, particularly in resource-poor settings. Viral, bacterial, and fungal pathogens, as well as parasites, play a role for many syndromes, and optimizing a single diagnostic system to detect a range of pat...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3689704?pdf=render |
_version_ | 1811259323650670592 |
---|---|
author | Maureen H Diaz Jessica L Waller Rebecca A Napoliello Md Shahidul Islam Bernard J Wolff Daniel J Burken Rhiannon L Holden Velusamy Srinivasan Melissa Arvay Lesley McGee M Steven Oberste Cynthia G Whitney Stephanie J Schrag Jonas M Winchell Samir K Saha |
author_facet | Maureen H Diaz Jessica L Waller Rebecca A Napoliello Md Shahidul Islam Bernard J Wolff Daniel J Burken Rhiannon L Holden Velusamy Srinivasan Melissa Arvay Lesley McGee M Steven Oberste Cynthia G Whitney Stephanie J Schrag Jonas M Winchell Samir K Saha |
author_sort | Maureen H Diaz |
collection | DOAJ |
description | Identification of etiology remains a significant challenge in the diagnosis of infectious diseases, particularly in resource-poor settings. Viral, bacterial, and fungal pathogens, as well as parasites, play a role for many syndromes, and optimizing a single diagnostic system to detect a range of pathogens is challenging. The TaqMan Array Card (TAC) is a multiple-pathogen detection method that has previously been identified as a valuable technique for determining etiology of infections and holds promise for expanded use in clinical microbiology laboratories and surveillance studies. We selected TAC for use in the Aetiology of Neonatal Infection in South Asia (ANISA) study for identifying etiologies of severe disease in neonates in Bangladesh, India, and Pakistan. Here we report optimization of TAC to improve pathogen detection and overcome technical challenges associated with use of this technology in a large-scale surveillance study. Specifically, we increased the number of assay replicates, implemented a more robust RT-qPCR enzyme formulation, and adopted a more efficient method for extraction of total nucleic acid from blood specimens. We also report the development and analytical validation of ten new assays for use in the ANISA study. Based on these data, we revised the study-specific TACs for detection of 22 pathogens in NP/OP swabs and 12 pathogens in blood specimens as well as two control reactions (internal positive control and human nucleic acid control) for each specimen type. The cumulative improvements realized through these optimization studies will benefit ANISA and perhaps other studies utilizing multiple-pathogen detection approaches. These lessons may also contribute to the expansion of TAC technology to the clinical setting. |
first_indexed | 2024-04-12T18:28:46Z |
format | Article |
id | doaj.art-e4e66da7c6504b12ac1b7efab2f78a62 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-12T18:28:46Z |
publishDate | 2013-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-e4e66da7c6504b12ac1b7efab2f78a622022-12-22T03:21:09ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0186e6618310.1371/journal.pone.0066183Optimization of Multiple Pathogen Detection Using the TaqMan Array Card: Application for a Population-Based Study of Neonatal Infection.Maureen H DiazJessica L WallerRebecca A NapolielloMd Shahidul IslamBernard J WolffDaniel J BurkenRhiannon L HoldenVelusamy SrinivasanMelissa ArvayLesley McGeeM Steven ObersteCynthia G WhitneyStephanie J SchragJonas M WinchellSamir K SahaIdentification of etiology remains a significant challenge in the diagnosis of infectious diseases, particularly in resource-poor settings. Viral, bacterial, and fungal pathogens, as well as parasites, play a role for many syndromes, and optimizing a single diagnostic system to detect a range of pathogens is challenging. The TaqMan Array Card (TAC) is a multiple-pathogen detection method that has previously been identified as a valuable technique for determining etiology of infections and holds promise for expanded use in clinical microbiology laboratories and surveillance studies. We selected TAC for use in the Aetiology of Neonatal Infection in South Asia (ANISA) study for identifying etiologies of severe disease in neonates in Bangladesh, India, and Pakistan. Here we report optimization of TAC to improve pathogen detection and overcome technical challenges associated with use of this technology in a large-scale surveillance study. Specifically, we increased the number of assay replicates, implemented a more robust RT-qPCR enzyme formulation, and adopted a more efficient method for extraction of total nucleic acid from blood specimens. We also report the development and analytical validation of ten new assays for use in the ANISA study. Based on these data, we revised the study-specific TACs for detection of 22 pathogens in NP/OP swabs and 12 pathogens in blood specimens as well as two control reactions (internal positive control and human nucleic acid control) for each specimen type. The cumulative improvements realized through these optimization studies will benefit ANISA and perhaps other studies utilizing multiple-pathogen detection approaches. These lessons may also contribute to the expansion of TAC technology to the clinical setting.http://europepmc.org/articles/PMC3689704?pdf=render |
spellingShingle | Maureen H Diaz Jessica L Waller Rebecca A Napoliello Md Shahidul Islam Bernard J Wolff Daniel J Burken Rhiannon L Holden Velusamy Srinivasan Melissa Arvay Lesley McGee M Steven Oberste Cynthia G Whitney Stephanie J Schrag Jonas M Winchell Samir K Saha Optimization of Multiple Pathogen Detection Using the TaqMan Array Card: Application for a Population-Based Study of Neonatal Infection. PLoS ONE |
title | Optimization of Multiple Pathogen Detection Using the TaqMan Array Card: Application for a Population-Based Study of Neonatal Infection. |
title_full | Optimization of Multiple Pathogen Detection Using the TaqMan Array Card: Application for a Population-Based Study of Neonatal Infection. |
title_fullStr | Optimization of Multiple Pathogen Detection Using the TaqMan Array Card: Application for a Population-Based Study of Neonatal Infection. |
title_full_unstemmed | Optimization of Multiple Pathogen Detection Using the TaqMan Array Card: Application for a Population-Based Study of Neonatal Infection. |
title_short | Optimization of Multiple Pathogen Detection Using the TaqMan Array Card: Application for a Population-Based Study of Neonatal Infection. |
title_sort | optimization of multiple pathogen detection using the taqman array card application for a population based study of neonatal infection |
url | http://europepmc.org/articles/PMC3689704?pdf=render |
work_keys_str_mv | AT maureenhdiaz optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection AT jessicalwaller optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection AT rebeccaanapoliello optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection AT mdshahidulislam optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection AT bernardjwolff optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection AT danieljburken optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection AT rhiannonlholden optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection AT velusamysrinivasan optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection AT melissaarvay optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection AT lesleymcgee optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection AT mstevenoberste optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection AT cynthiagwhitney optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection AT stephaniejschrag optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection AT jonasmwinchell optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection AT samirksaha optimizationofmultiplepathogendetectionusingthetaqmanarraycardapplicationforapopulationbasedstudyofneonatalinfection |