Local Mammary Glucose Supply Regulates Availability and Intracellular Metabolic Pathways of Glucose in the Mammary Gland of Lactating Dairy Goats Under Malnutrition of Energy
As glucose is the regulator of both the milk yield and mammary oxidative status, glucose supply is considered to play important nutritional and physiological role on mammary gland (MG) metabolism. However, inconsistent results were observed from different infusion methods to evaluate the effect of g...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2018-10-01
|
Series: | Frontiers in Physiology |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fphys.2018.01467/full |
_version_ | 1818268804480761856 |
---|---|
author | Jie Cai Jie Cai Feng-Qi Zhao Feng-Qi Zhao Jian-Xin Liu Jian-Xin Liu Di-Ming Wang Di-Ming Wang |
author_facet | Jie Cai Jie Cai Feng-Qi Zhao Feng-Qi Zhao Jian-Xin Liu Jian-Xin Liu Di-Ming Wang Di-Ming Wang |
author_sort | Jie Cai |
collection | DOAJ |
description | As glucose is the regulator of both the milk yield and mammary oxidative status, glucose supply is considered to play important nutritional and physiological role on mammary gland (MG) metabolism. However, inconsistent results were observed from different infusion methods to evaluate the effect of glucose on MG glucose metabolism. Thus, precise method should be developed to learn how availability and intracellular metabolic pathways of glucose in the MG are altered by the direct mammary glucose supply. In addition, limited information is available on the role of mammary glucose supply in milk synthesis in lactating ruminants under an energy-deficient diet. Direct glucose supply to the MG was implemented in the current study through the external pudendal artery infusion under an energy-deficient diet. Six doses of glucose (0, 20, 40, 60, 80, and 100 g/d) were infused through the external pudendal arteries, which is the main artery to the MG, to six lactating goats fed with basal diet meeting 81% energy requirement in a 6 × 6 Latin square design. Milk and lactose yields were both quadratically increased with increased glucose infusion, whereas the milk yield changed inconsistently with the increased energy balance (EB), indicating local glucose supply, rather than EB, improved milk production. Glucose fluxes in the MG were significantly increased and correlated with mammary plasma flow. However, the ratio of lactose yield to glucose absorbed by the MG was significantly decreased. The increased glucose fluxes in the MG and changed glucose-related metabolites in milk indicated that the glucose availability and intracellular metabolic pathways was regulated by local mammary glucose. Acute glycolysis consumed the superfluous glucose and induced accumulation of oxygen radicals in the MG during over-supplied glucose conditions. The present study provided insight to optimal glucose supply to the MG during the lactation. |
first_indexed | 2024-12-12T20:44:19Z |
format | Article |
id | doaj.art-e4f2cf1c9ed7448d938929acb7a51b37 |
institution | Directory Open Access Journal |
issn | 1664-042X |
language | English |
last_indexed | 2024-12-12T20:44:19Z |
publishDate | 2018-10-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Physiology |
spelling | doaj.art-e4f2cf1c9ed7448d938929acb7a51b372022-12-22T00:12:38ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2018-10-01910.3389/fphys.2018.01467413604Local Mammary Glucose Supply Regulates Availability and Intracellular Metabolic Pathways of Glucose in the Mammary Gland of Lactating Dairy Goats Under Malnutrition of EnergyJie Cai0Jie Cai1Feng-Qi Zhao2Feng-Qi Zhao3Jian-Xin Liu4Jian-Xin Liu5Di-Ming Wang6Di-Ming Wang7Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, ChinaMinistry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, ChinaInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, ChinaDepartment of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United StatesInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, ChinaMinistry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, ChinaInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, ChinaMinistry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, ChinaAs glucose is the regulator of both the milk yield and mammary oxidative status, glucose supply is considered to play important nutritional and physiological role on mammary gland (MG) metabolism. However, inconsistent results were observed from different infusion methods to evaluate the effect of glucose on MG glucose metabolism. Thus, precise method should be developed to learn how availability and intracellular metabolic pathways of glucose in the MG are altered by the direct mammary glucose supply. In addition, limited information is available on the role of mammary glucose supply in milk synthesis in lactating ruminants under an energy-deficient diet. Direct glucose supply to the MG was implemented in the current study through the external pudendal artery infusion under an energy-deficient diet. Six doses of glucose (0, 20, 40, 60, 80, and 100 g/d) were infused through the external pudendal arteries, which is the main artery to the MG, to six lactating goats fed with basal diet meeting 81% energy requirement in a 6 × 6 Latin square design. Milk and lactose yields were both quadratically increased with increased glucose infusion, whereas the milk yield changed inconsistently with the increased energy balance (EB), indicating local glucose supply, rather than EB, improved milk production. Glucose fluxes in the MG were significantly increased and correlated with mammary plasma flow. However, the ratio of lactose yield to glucose absorbed by the MG was significantly decreased. The increased glucose fluxes in the MG and changed glucose-related metabolites in milk indicated that the glucose availability and intracellular metabolic pathways was regulated by local mammary glucose. Acute glycolysis consumed the superfluous glucose and induced accumulation of oxygen radicals in the MG during over-supplied glucose conditions. The present study provided insight to optimal glucose supply to the MG during the lactation.https://www.frontiersin.org/article/10.3389/fphys.2018.01467/fullglucose supplymetabolic partitionlactationmammary glandmilk production efficiency |
spellingShingle | Jie Cai Jie Cai Feng-Qi Zhao Feng-Qi Zhao Jian-Xin Liu Jian-Xin Liu Di-Ming Wang Di-Ming Wang Local Mammary Glucose Supply Regulates Availability and Intracellular Metabolic Pathways of Glucose in the Mammary Gland of Lactating Dairy Goats Under Malnutrition of Energy Frontiers in Physiology glucose supply metabolic partition lactation mammary gland milk production efficiency |
title | Local Mammary Glucose Supply Regulates Availability and Intracellular Metabolic Pathways of Glucose in the Mammary Gland of Lactating Dairy Goats Under Malnutrition of Energy |
title_full | Local Mammary Glucose Supply Regulates Availability and Intracellular Metabolic Pathways of Glucose in the Mammary Gland of Lactating Dairy Goats Under Malnutrition of Energy |
title_fullStr | Local Mammary Glucose Supply Regulates Availability and Intracellular Metabolic Pathways of Glucose in the Mammary Gland of Lactating Dairy Goats Under Malnutrition of Energy |
title_full_unstemmed | Local Mammary Glucose Supply Regulates Availability and Intracellular Metabolic Pathways of Glucose in the Mammary Gland of Lactating Dairy Goats Under Malnutrition of Energy |
title_short | Local Mammary Glucose Supply Regulates Availability and Intracellular Metabolic Pathways of Glucose in the Mammary Gland of Lactating Dairy Goats Under Malnutrition of Energy |
title_sort | local mammary glucose supply regulates availability and intracellular metabolic pathways of glucose in the mammary gland of lactating dairy goats under malnutrition of energy |
topic | glucose supply metabolic partition lactation mammary gland milk production efficiency |
url | https://www.frontiersin.org/article/10.3389/fphys.2018.01467/full |
work_keys_str_mv | AT jiecai localmammaryglucosesupplyregulatesavailabilityandintracellularmetabolicpathwaysofglucoseinthemammaryglandoflactatingdairygoatsundermalnutritionofenergy AT jiecai localmammaryglucosesupplyregulatesavailabilityandintracellularmetabolicpathwaysofglucoseinthemammaryglandoflactatingdairygoatsundermalnutritionofenergy AT fengqizhao localmammaryglucosesupplyregulatesavailabilityandintracellularmetabolicpathwaysofglucoseinthemammaryglandoflactatingdairygoatsundermalnutritionofenergy AT fengqizhao localmammaryglucosesupplyregulatesavailabilityandintracellularmetabolicpathwaysofglucoseinthemammaryglandoflactatingdairygoatsundermalnutritionofenergy AT jianxinliu localmammaryglucosesupplyregulatesavailabilityandintracellularmetabolicpathwaysofglucoseinthemammaryglandoflactatingdairygoatsundermalnutritionofenergy AT jianxinliu localmammaryglucosesupplyregulatesavailabilityandintracellularmetabolicpathwaysofglucoseinthemammaryglandoflactatingdairygoatsundermalnutritionofenergy AT dimingwang localmammaryglucosesupplyregulatesavailabilityandintracellularmetabolicpathwaysofglucoseinthemammaryglandoflactatingdairygoatsundermalnutritionofenergy AT dimingwang localmammaryglucosesupplyregulatesavailabilityandintracellularmetabolicpathwaysofglucoseinthemammaryglandoflactatingdairygoatsundermalnutritionofenergy |