Expression of fluorescent tagged recombinant erythroferrone protein

Objective: To produce fluorescent tagged recombinant erythroferrone protein (ERFE_eGFP) for laboratory investigations. Methods: Erythroferrone (ERFE) gene was fused to green fluorescent protein (eGFP) gene and cloned in a pSecTag2Hygro plasmid. The constructed plasmid was amplified in Escherichia co...

Full description

Bibliographic Details
Main Authors: Min Min Than, Jetsada Ruangsuriya, Chairat Uthaipibull, Somdet Srichairatanakool
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2018-01-01
Series:Asian Pacific Journal of Tropical Biomedicine
Subjects:
Online Access:http://www.apjtb.org/article.asp?issn=2221-1691;year=2018;volume=8;issue=7;spage=360;epage=364;aulast=Than
Description
Summary:Objective: To produce fluorescent tagged recombinant erythroferrone protein (ERFE_eGFP) for laboratory investigations. Methods: Erythroferrone (ERFE) gene was fused to green fluorescent protein (eGFP) gene and cloned in a pSecTag2Hygro plasmid. The constructed plasmid was amplified in Escherichia coli DH5 α and the eGFP-fused ERFE (ERFE_eGFP) protein was expressed in human embryonic kidney (HEK293T) cell line. Results: The plasmid constructed from colony C6 contained ERFE_eGFP with the correct restriction sizes of 4.2 kb and expressed secretory ERFE_eGFP fusion protein (approximately size of 75 kDa) in HEK293T cell line. Conclusions: ERFE_eGFP recombinant protein is successfully expressed as a secretory functional protein and could be sensitively detected using fluorometry. This fusion protein might benefit future applications for localization of cellular ERFE receptors and competitive immunoassay of ERFE concentration.
ISSN:2221-1691