Modelo matemático aplicado a la dinámica del nitrógeno en suelos manejados con praderas del sur de Chile Mathematical model applied to the dynamica of nitrogen in soils under pasture in southern Chile

La eficientización de la fertilización en los sistemas pratenses, son una necesidad para los ganaderos del sur de Chile, por su importancia en la alimentación del ganado. El objetivo fue reformular un modelo matemático de simulación propuesto para describir la concentración de nitrógeno total (NT) e...

Full description

Bibliographic Details
Main Authors: Paulina Alejandra Salazar Espinoza, Juan Alfredo Gómez Fernández, Pedro Antonio Núñez Ramos
Format: Article
Language:English
Published: Asociación Argentina de la Ciencia del Suelo 2011-12-01
Series:Ciencia del Suelo
Subjects:
Online Access:http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1850-20672011000200010
Description
Summary:La eficientización de la fertilización en los sistemas pratenses, son una necesidad para los ganaderos del sur de Chile, por su importancia en la alimentación del ganado. El objetivo fue reformular un modelo matemático de simulación propuesto para describir la concentración de nitrógeno total (NT) en el suelo, a fin de determinar las estrategias de fertilización adecuada en pradera para el cultivo de especies y su utilización en la alimentación del ganado, ajustando los datos experimentales reales a los simulados. Las hipótesis básicas consistieron, primero, que la concentración de NT en el suelo depende de la concentración de sus tres componentes principales: nitrógeno (N) orgánico (N-NO), nitrato (N-NO3-) y amonio (N-NH4+); segundo, que el comportamiento de la concentración de estos componentes depende fuertemente de la estación del año y por tanto, los coeficientes en el modelo deben ser distintos para cada estación y tercero, que la porción de suelo que es significativa para el crecimiento de la pradera está entre los primeros 10 cm de profundidad. El modelo modificado está formado por un sistema de ecuaciones diferenciales parciales (EDP), el cual consta de EDP's para N-NO y N-NO3-, en tanto, N-NH4+ fue interpolado por un polinomio cuyo grado varió con la estación. Los parámetros del modelo se calcularon resolviendo un problema de mínimos cuadrados con funcional suma de residuales, utilizando los datos experimentales. Se utilizaron los métodos de optimización para resolver el problema de mínimos cuadrados. El modelo utilizó datos iniciales y de borde aproximados por polinomios para cada estación del año. Los parámetros resultantes fueron dos: un Quasi-Newton (BFGS) y un Algoritmo Genético (AG). La combinación de estos algoritmos tuvo como propósito evitar en lo posible los mínimos locales y encontrar un mínimo global. El AG se utilizó sis­temáticamente para hallar buenos puntos de referencia, los cuales se le daban a BFGS como solución inicial. Esta combinación funcionó satisfactoriamente pues todos los parámetros encontrados minimizan globalmente la suma de cuadrados residuales. Los resultados mostraron que el modelo propuesto se adaptó de manera significativa a los datos (con 3% de error máximo), por lo tanto, los parámetros obtenidos pueden considerarse los correspondientes al modelo para el tipo de suelo y estación del año correspondiente.<br>The fertilization efficiency program in pasture systems for improving livestock feeding is very important for for farmers in southern Chile. This paper reformulates a mathematical simulation model proposed to describe the concentration of total nitrogen (NT) in soil, in order to fit real experimental data. The objective was to determine the appropriate fertilization strategies in pastures and their direct use by livestock. Critical assumptions consisted, first, in that the concentration of TN in the soil depends on the concentration of its three major components: organic nitrogen (N-NO), nitrate nitrogen (N-NO3-) and ammonium nitrogen (N-NH4+) and second, that the behavior of the concentration of these components depends strongly on the season of the year and, therefore, the coefficients in the model must be different for each season and third, that only the first 10 cm of the soil profile are meaningful for pasture growth. The modified model consists of a system of partial differential equations (PDE), which consists of EDP's for N-NO and N-NO3-, while N-NH4+ was interpolated by a polynomial with the degree varying with the season. The model parameters were calculated solving a functional least squares sum of residuals, using the experimental data. We used optimization methods to solve the problem of least squares. The model used initial data and boundaries approximated by polynomials for each season of the year. The resulting parameters were two: A Quasi-Newton (BFGS) and a Genetic Algorithm (GA). The combination of these algorithms was used to avoid possible local minima and to find a global minimum. The GA was used systematically to find good reference points, which gave BFGS as the initial solution. This combination worked well as all the parameters found globally minimized the residual sum of squares. The results showed that the proposed model was significantly adapted to the data (with a 3% maximum error); therefore, the parameters obtained can be considered for the model for the soil type and season accordingly.
ISSN:0326-3169
1850-2067