Subspace Projection Attention Network for GPR Heterogeneous Clutter Removal

Clutter removal in ground-penetrating radar (GPR) based on deep learning has been studied in recent years. However, existing methods are primarily designed for homogeneous background conditions and utilize only local spatial information via the convolution operation. In order to solve these issues,...

Full description

Bibliographic Details
Main Authors: Yanjie Cao, Xiaopeng Yang, Conglong Guo, Dong Li, Peng Yin, Tian Lan
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10402071/
Description
Summary:Clutter removal in ground-penetrating radar (GPR) based on deep learning has been studied in recent years. However, existing methods are primarily designed for homogeneous background conditions and utilize only local spatial information via the convolution operation. In order to solve these issues, a subspace projection attention (SPA) network is proposed for GPR heterogeneous clutter removal in this article. First, a heterogeneous concrete dataset based on a numerical model with randomly placed aggregates is constructed, which incorporates the complex electromagnetic propagation process accurately to improve the effectiveness for heterogeneous clutter removal. In addition, the clutter basis learning neural network is designed by integrating the SPA module into the skip connection paths of U-Net architecture. By learning the subspace basis vectors adaptively, the SPA exploits both local and global spatial information to extract target features precisely. At the same time, the feature maps are projected to the target subspace to remove heterogeneous clutter features. Finally, the performance and effectiveness of proposed method are validated by simulations and experiments.
ISSN:2151-1535