Contingency Analysis to Evaluate the Robustness in Large-Scale Smart Grids: Based on Information Security Objectives and Frequency Stability

Smart grids (SGs) are attracting attention as high value-added platforms, which mass-produce new business models through real-time information sharing. However, the open-ended information structure of SGs increases the risk of exposure to cyberattacks through the creation of multiple communication a...

Full description

Bibliographic Details
Main Authors: Pil-Sung Woo, Balho H. Kim
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/23/6267
Description
Summary:Smart grids (SGs) are attracting attention as high value-added platforms, which mass-produce new business models through real-time information sharing. However, the open-ended information structure of SGs increases the risk of exposure to cyberattacks through the creation of multiple communication access points. In a power system where a real-time balance of supply and demand is essential, cyberattacks result in cascading failures leading to power outages. Therefore, this paper proposes a method to evaluate the robustness of large-scale SGs against cybersecurity disturbances. The proposed evaluation method established a hierarchy quantification technique considering the structural characteristics of SGs. With respect to the cyber hierarchy, relevant standards (NERC CIP, NIST FIPS) were applied to classify the grades of information security risk. In the case of physical hierarchy, the power system was calculated by using optimal power flow and analyzed the frequency stability. This study was aimed at identifying the vulnerabilities in the physical topology aspect of intelligent power systems due to cybersecurity disturbances.
ISSN:1996-1073