The H3K27 demethylase, Utx, regulates adipogenesis in a differentiation stage-dependent manner.

Understanding the molecular mechanisms that drive adipogenesis is important in developing new treatments for obesity and diabetes. Epigenetic regulations determine the capacity of adipogenesis. In this study, we examined the role of a histone H3 lysine 27 demethylase, the ubiquitously transcribed te...

Full description

Bibliographic Details
Main Authors: Kazushige Ota, Kit I Tong, Kouichiro Goto, Shuta Tomida, Akiyoshi Komuro, Zhong Wang, Kazuto Nishio, Hitoshi Okada
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5358847?pdf=render
Description
Summary:Understanding the molecular mechanisms that drive adipogenesis is important in developing new treatments for obesity and diabetes. Epigenetic regulations determine the capacity of adipogenesis. In this study, we examined the role of a histone H3 lysine 27 demethylase, the ubiquitously transcribed tetratricopeptide repeat protein on the X chromosome (Utx), in the differentiation of mouse embryonic stem cells (mESCs) to adipocytes. Using gene trapping, we examined Utx-deficient male mESCs to determine whether loss of Utx would enhance or inhibit the differentiation of mESCs to adipocytes. Utx-deficient mESCs showed diminished potential to differentiate to adipocytes compared to that of controls. In contrast, Utx-deficient preadipocytes showed enhanced differentiation to adipocytes. Microarray analyses indicated that the β-catenin/c-Myc signaling pathway was differentially regulated in Utx-deficient cells during adipocyte differentiation. Therefore, our data suggest that Utx governs adipogenesis by regulating c-Myc in a differentiation stage-specific manner and that targeting the Utx signaling pathway could be beneficial for the treatment of obesity, diabetes, and congenital utx-deficiency disorders.
ISSN:1932-6203