Dark matter from axion strings with adaptive mesh refinement

The question of what axion mass would give rise to the observed dark matter abundance requires proper modelling of non-linear dynamics of the axion field in the early Universe. Here, the authors use adaptive mesh refinement simulations to predict a mass in the range in the range (40,180) microelectr...

Full description

Bibliographic Details
Main Authors: Malte Buschmann, Joshua W. Foster, Anson Hook, Adam Peterson, Don E. Willcox, Weiqun Zhang, Benjamin R. Safdi
Format: Article
Language:English
Published: Nature Portfolio 2022-02-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-022-28669-y
_version_ 1830407234552594432
author Malte Buschmann
Joshua W. Foster
Anson Hook
Adam Peterson
Don E. Willcox
Weiqun Zhang
Benjamin R. Safdi
author_facet Malte Buschmann
Joshua W. Foster
Anson Hook
Adam Peterson
Don E. Willcox
Weiqun Zhang
Benjamin R. Safdi
author_sort Malte Buschmann
collection DOAJ
description The question of what axion mass would give rise to the observed dark matter abundance requires proper modelling of non-linear dynamics of the axion field in the early Universe. Here, the authors use adaptive mesh refinement simulations to predict a mass in the range in the range (40,180) microelectronvolts.
first_indexed 2024-12-20T18:26:18Z
format Article
id doaj.art-e512756827334158824608331d733fc6
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-20T18:26:18Z
publishDate 2022-02-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-e512756827334158824608331d733fc62022-12-21T19:30:09ZengNature PortfolioNature Communications2041-17232022-02-0113111010.1038/s41467-022-28669-yDark matter from axion strings with adaptive mesh refinementMalte Buschmann0Joshua W. Foster1Anson Hook2Adam Peterson3Don E. Willcox4Weiqun Zhang5Benjamin R. Safdi6Department of Physics, Princeton UniversityLeinweber Center for Theoretical Physics, Department of Physics, University of MichiganMaryland Center for Fundamental Physics, University of MarylandCenter for Computational Sciences and Engineering Lawrence Berkeley National LaboratoryCenter for Computational Sciences and Engineering Lawrence Berkeley National LaboratoryCenter for Computational Sciences and Engineering Lawrence Berkeley National LaboratoryBerkeley Center for Theoretical Physics, University of CaliforniaThe question of what axion mass would give rise to the observed dark matter abundance requires proper modelling of non-linear dynamics of the axion field in the early Universe. Here, the authors use adaptive mesh refinement simulations to predict a mass in the range in the range (40,180) microelectronvolts.https://doi.org/10.1038/s41467-022-28669-y
spellingShingle Malte Buschmann
Joshua W. Foster
Anson Hook
Adam Peterson
Don E. Willcox
Weiqun Zhang
Benjamin R. Safdi
Dark matter from axion strings with adaptive mesh refinement
Nature Communications
title Dark matter from axion strings with adaptive mesh refinement
title_full Dark matter from axion strings with adaptive mesh refinement
title_fullStr Dark matter from axion strings with adaptive mesh refinement
title_full_unstemmed Dark matter from axion strings with adaptive mesh refinement
title_short Dark matter from axion strings with adaptive mesh refinement
title_sort dark matter from axion strings with adaptive mesh refinement
url https://doi.org/10.1038/s41467-022-28669-y
work_keys_str_mv AT maltebuschmann darkmatterfromaxionstringswithadaptivemeshrefinement
AT joshuawfoster darkmatterfromaxionstringswithadaptivemeshrefinement
AT ansonhook darkmatterfromaxionstringswithadaptivemeshrefinement
AT adampeterson darkmatterfromaxionstringswithadaptivemeshrefinement
AT donewillcox darkmatterfromaxionstringswithadaptivemeshrefinement
AT weiqunzhang darkmatterfromaxionstringswithadaptivemeshrefinement
AT benjaminrsafdi darkmatterfromaxionstringswithadaptivemeshrefinement