Summary: | Additively manufactured Ni-Ti lattice structures have controllable bio/mechanical properties, as well as excellent large deformation and damping properties similar to those of natural bone. They have broad application prospects in the field of bone implantation. Triply Periodic Minimal Surface (TPMS) structures are believed to be the most potential and ideal bionic bone structures. In this work, Ni-Ti Gyroid-type TPMS lattice structures were fabricated by selective laser melting (SLM) and their manufacturing fidelity and compression properties were evaluated. By changing the maximum strain value, the hyperelastic recovery performance under cyclic stress was investigated. The results showed that the Ni-Ti Gyroid lattice structures fabricated by SLM had excellent manufacturability (relative density can reach 98.93%) and mechanical properties (elastic modulus is about 130.8 MPa, ultimate strength is about 2.7 MPa). The hyperelastic cycle testing showed that the elastic modulus, yield strength and ultimate strength of the lattice structures tended to stablilize gradually with increasing numbers of cycles. The residual strain increased with the number of cycles, and as the maximum strain increased from 4% to 8%, the residual strain also increased from 1% to 4%.
|