Tomographic Universality of the Discrete Wigner Function

We observe that the discrete Wigner functions (DWFs) of <i>n</i>-partite systems with odd local dimensions are tomographically universal, as reflected in the delta function form of the DWF for any stabilizer. However, in the <i>n</i>-qubit case, this property does not hold du...

Full description

Bibliographic Details
Main Authors: Isabel Sainz, Ernesto Camacho, Andrés García, Andrei B. Klimov
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Quantum Reports
Subjects:
Online Access:https://www.mdpi.com/2624-960X/6/1/5
_version_ 1797239550305632256
author Isabel Sainz
Ernesto Camacho
Andrés García
Andrei B. Klimov
author_facet Isabel Sainz
Ernesto Camacho
Andrés García
Andrei B. Klimov
author_sort Isabel Sainz
collection DOAJ
description We observe that the discrete Wigner functions (DWFs) of <i>n</i>-partite systems with odd local dimensions are tomographically universal, as reflected in the delta function form of the DWF for any stabilizer. However, in the <i>n</i>-qubit case, this property does not hold due to the non-factorization of the mapping kernel, the explicit form of which depends on a particular partition of the discrete phase space. Nonetheless, it turns out that the DWF for some specific stabilizers, not included in the set used for the construction of the Wigner map, takes on the form of a delta function. This implies that the possibility of classical simulations of Pauli measurements in a given stabilizer state for qubit systems is closely tied to the experimental setup.
first_indexed 2024-04-24T17:53:19Z
format Article
id doaj.art-e51f8dd34094405188b860f510868e7e
institution Directory Open Access Journal
issn 2624-960X
language English
last_indexed 2024-04-24T17:53:19Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Quantum Reports
spelling doaj.art-e51f8dd34094405188b860f510868e7e2024-03-27T14:01:51ZengMDPI AGQuantum Reports2624-960X2024-01-0161587310.3390/quantum6010005Tomographic Universality of the Discrete Wigner FunctionIsabel Sainz0Ernesto Camacho1Andrés García2Andrei B. Klimov3Departamento de Física, Universidad de Guadalajara, Revolución 1500, Guadalajara 44420, MexicoDepartamento de Matemáticas, Universidad de Guadalajara, Revolución 1500, Guadalajara 44420, MexicoDepartamento de Matemáticas, Universidad de Guadalajara, Revolución 1500, Guadalajara 44420, MexicoDepartamento de Física, Universidad de Guadalajara, Revolución 1500, Guadalajara 44420, MexicoWe observe that the discrete Wigner functions (DWFs) of <i>n</i>-partite systems with odd local dimensions are tomographically universal, as reflected in the delta function form of the DWF for any stabilizer. However, in the <i>n</i>-qubit case, this property does not hold due to the non-factorization of the mapping kernel, the explicit form of which depends on a particular partition of the discrete phase space. Nonetheless, it turns out that the DWF for some specific stabilizers, not included in the set used for the construction of the Wigner map, takes on the form of a delta function. This implies that the possibility of classical simulations of Pauli measurements in a given stabilizer state for qubit systems is closely tied to the experimental setup.https://www.mdpi.com/2624-960X/6/1/5discrete Wigner functionquantum tomographystabilizer formalismmutually unbiased bases
spellingShingle Isabel Sainz
Ernesto Camacho
Andrés García
Andrei B. Klimov
Tomographic Universality of the Discrete Wigner Function
Quantum Reports
discrete Wigner function
quantum tomography
stabilizer formalism
mutually unbiased bases
title Tomographic Universality of the Discrete Wigner Function
title_full Tomographic Universality of the Discrete Wigner Function
title_fullStr Tomographic Universality of the Discrete Wigner Function
title_full_unstemmed Tomographic Universality of the Discrete Wigner Function
title_short Tomographic Universality of the Discrete Wigner Function
title_sort tomographic universality of the discrete wigner function
topic discrete Wigner function
quantum tomography
stabilizer formalism
mutually unbiased bases
url https://www.mdpi.com/2624-960X/6/1/5
work_keys_str_mv AT isabelsainz tomographicuniversalityofthediscretewignerfunction
AT ernestocamacho tomographicuniversalityofthediscretewignerfunction
AT andresgarcia tomographicuniversalityofthediscretewignerfunction
AT andreibklimov tomographicuniversalityofthediscretewignerfunction