Summary: | In order to improve energy efficiency by increasing heat dissipation performance of bus-bar which distributes the current in high-power switchboard, the heat dissipation effects of the shape modification and surface treatment of Cu bus-bar were studied. The surface temperatures of the conventional plate-type bus-bar, and the improved tunnel-type bus-bar were compared by using electromagnetic and thermal analyses. The optimum thickness of tunnel-type bus-bar and the spacing and array among three bus-bars were calculated; and the surface temperature of tunnel-type bus-bar showed 7.9 °C lower than that of plate-type bus-bar in a 3-phase array condition. In addition, the surface and internal temperatures of the uncoated, CNT (Carbon nanotube)-coated, and BN (Boron nitride)-coated Cu bus-bars were measured with thermal imaging camera and the experiment using a hot plate. It was confirmed that the difference in the internal temperature between uncoated and BN-coated Cu was 19.4 °C. The application of the bus-bar improved from this study might contribute to the increase in power energy efficiency.
|