Earthquake-Related Signals in Central Italy Detected by Hydrogeochemical and Satellite Techniques
Central Apennines are one of the highest seismic risk regions in Italy. A number of energetic events (MW > 5) struck the region during the period 2004–2017, killing several hundreds of people (e.g., 294 casualties associated with the August 24th, 2016, MW 6.0 event of Amatrice). These earthqu...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-11-01
|
Series: | Frontiers in Earth Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/feart.2020.584716/full |
_version_ | 1817988694689185792 |
---|---|
author | Giovanni Martinelli Giovanni Martinelli Giovanni Martinelli Gianluca Facca Nicola Genzano Fabrizio Gherardi Mariano Lisi Lisa Pierotti Valerio Tramutoli |
author_facet | Giovanni Martinelli Giovanni Martinelli Giovanni Martinelli Gianluca Facca Nicola Genzano Fabrizio Gherardi Mariano Lisi Lisa Pierotti Valerio Tramutoli |
author_sort | Giovanni Martinelli |
collection | DOAJ |
description | Central Apennines are one of the highest seismic risk regions in Italy. A number of energetic events (MW > 5) struck the region during the period 2004–2017, killing several hundreds of people (e.g., 294 casualties associated with the August 24th, 2016, MW 6.0 event of Amatrice). These earthquakes impacted piezometric levels, springs discharges, and groundwater chemistry across a large area, even at distances of dozens of kilometers from the epicenters. Here we present a multidisciplinary dataset based on hydrogeochemical and satellite observations associated with the seismic events that occurred in Central Italy during the period 2004–2017, which combines information derived from the application of groundwater monitoring and satellite techniques. Groundwater monitoring techniques allowed for the detection of hydrogeochemical anomalies in spring and well waters (14 water sampling points in total, with 22 variations larger than 2σ), while satellite techniques were applied to detect time-space variations in ground thermal emissions. We detected two significant, almost synchronous, anomalies in 2009 and 2016–2017 with both techniques, and we tentatively correlated them to crustal deformation processes. Part of the observed signals were detected before mainshocks, and they appear to be related to aseismic slip or to seismic slip eventually induced by minor fluctuations in seismicity. We argue that the combination of two factors, i.e., the shallow depth of local earthquakes and the concurrent deepening of groundwater circulation paths to several km depth, allow for the recording of variations in the stress field by geofluids released at the surface. |
first_indexed | 2024-04-14T00:37:18Z |
format | Article |
id | doaj.art-e52af5aaab484b0e871b7b1d248cc793 |
institution | Directory Open Access Journal |
issn | 2296-6463 |
language | English |
last_indexed | 2024-04-14T00:37:18Z |
publishDate | 2020-11-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Earth Science |
spelling | doaj.art-e52af5aaab484b0e871b7b1d248cc7932022-12-22T02:22:19ZengFrontiers Media S.A.Frontiers in Earth Science2296-64632020-11-01810.3389/feart.2020.584716584716Earthquake-Related Signals in Central Italy Detected by Hydrogeochemical and Satellite TechniquesGiovanni Martinelli0Giovanni Martinelli1Giovanni Martinelli2Gianluca Facca3Nicola Genzano4Fabrizio Gherardi5Mariano Lisi6Lisa Pierotti7Valerio Tramutoli8Istituto Nazionale di Geofisica e Vulcanologia, Palermo, ItalyNorthwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, ChinaKey Laboratory of Petroleum Resource Research, Lanzhou, ChinaConsiglio Nazionale delle Ricerche (CNR), Istituto di Geoscienze e Georisorse (IGG), Pisa, ItalySchool of Engineering, University of Basilicata, Potenza, ItalyConsiglio Nazionale delle Ricerche (CNR), Istituto di Geoscienze e Georisorse (IGG), Pisa, ItalyConsiglio Nazionale delle Ricerche (CNR), Istituto di Metodologie per Analisi Ambientale (IMAA), Tito Scalo (Potenza), ItalyConsiglio Nazionale delle Ricerche (CNR), Istituto di Geoscienze e Georisorse (IGG), Pisa, ItalySchool of Engineering, University of Basilicata, Potenza, ItalyCentral Apennines are one of the highest seismic risk regions in Italy. A number of energetic events (MW > 5) struck the region during the period 2004–2017, killing several hundreds of people (e.g., 294 casualties associated with the August 24th, 2016, MW 6.0 event of Amatrice). These earthquakes impacted piezometric levels, springs discharges, and groundwater chemistry across a large area, even at distances of dozens of kilometers from the epicenters. Here we present a multidisciplinary dataset based on hydrogeochemical and satellite observations associated with the seismic events that occurred in Central Italy during the period 2004–2017, which combines information derived from the application of groundwater monitoring and satellite techniques. Groundwater monitoring techniques allowed for the detection of hydrogeochemical anomalies in spring and well waters (14 water sampling points in total, with 22 variations larger than 2σ), while satellite techniques were applied to detect time-space variations in ground thermal emissions. We detected two significant, almost synchronous, anomalies in 2009 and 2016–2017 with both techniques, and we tentatively correlated them to crustal deformation processes. Part of the observed signals were detected before mainshocks, and they appear to be related to aseismic slip or to seismic slip eventually induced by minor fluctuations in seismicity. We argue that the combination of two factors, i.e., the shallow depth of local earthquakes and the concurrent deepening of groundwater circulation paths to several km depth, allow for the recording of variations in the stress field by geofluids released at the surface.https://www.frontiersin.org/articles/10.3389/feart.2020.584716/fullgroundwater chemistryCO2 degassingCO2 anomalysatellite observationthermal infrared anomalycrustal deformation |
spellingShingle | Giovanni Martinelli Giovanni Martinelli Giovanni Martinelli Gianluca Facca Nicola Genzano Fabrizio Gherardi Mariano Lisi Lisa Pierotti Valerio Tramutoli Earthquake-Related Signals in Central Italy Detected by Hydrogeochemical and Satellite Techniques Frontiers in Earth Science groundwater chemistry CO2 degassing CO2 anomaly satellite observation thermal infrared anomaly crustal deformation |
title | Earthquake-Related Signals in Central Italy Detected by Hydrogeochemical and Satellite Techniques |
title_full | Earthquake-Related Signals in Central Italy Detected by Hydrogeochemical and Satellite Techniques |
title_fullStr | Earthquake-Related Signals in Central Italy Detected by Hydrogeochemical and Satellite Techniques |
title_full_unstemmed | Earthquake-Related Signals in Central Italy Detected by Hydrogeochemical and Satellite Techniques |
title_short | Earthquake-Related Signals in Central Italy Detected by Hydrogeochemical and Satellite Techniques |
title_sort | earthquake related signals in central italy detected by hydrogeochemical and satellite techniques |
topic | groundwater chemistry CO2 degassing CO2 anomaly satellite observation thermal infrared anomaly crustal deformation |
url | https://www.frontiersin.org/articles/10.3389/feart.2020.584716/full |
work_keys_str_mv | AT giovannimartinelli earthquakerelatedsignalsincentralitalydetectedbyhydrogeochemicalandsatellitetechniques AT giovannimartinelli earthquakerelatedsignalsincentralitalydetectedbyhydrogeochemicalandsatellitetechniques AT giovannimartinelli earthquakerelatedsignalsincentralitalydetectedbyhydrogeochemicalandsatellitetechniques AT gianlucafacca earthquakerelatedsignalsincentralitalydetectedbyhydrogeochemicalandsatellitetechniques AT nicolagenzano earthquakerelatedsignalsincentralitalydetectedbyhydrogeochemicalandsatellitetechniques AT fabriziogherardi earthquakerelatedsignalsincentralitalydetectedbyhydrogeochemicalandsatellitetechniques AT marianolisi earthquakerelatedsignalsincentralitalydetectedbyhydrogeochemicalandsatellitetechniques AT lisapierotti earthquakerelatedsignalsincentralitalydetectedbyhydrogeochemicalandsatellitetechniques AT valeriotramutoli earthquakerelatedsignalsincentralitalydetectedbyhydrogeochemicalandsatellitetechniques |