Design Consideration on a Low-Cost Permanent Magnetization Remanufacturing Method for Low-Efficiency Induction Motors

At present, a large number of inefficient induction motors (IMs) are still being used in various industrial fields, resulting in a huge waste of energy. Obviously, it is expensive to replace all these machines with high-efficiency motors. Therefore, this paper will investigate the method of low-cost...

Full description

Bibliographic Details
Main Authors: Peng Zhou, Yanliang Xu, Wenji Zhang
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/17/6142
Description
Summary:At present, a large number of inefficient induction motors (IMs) are still being used in various industrial fields, resulting in a huge waste of energy. Obviously, it is expensive to replace all these machines with high-efficiency motors. Therefore, this paper will investigate the method of low-cost modification of inefficient IMs and propose a low-cost permanent magnetization remanufacturing (PMR) method that can make full use of the original structure of IMs. The PMR method converts the IM’s rotor into a permanent magnet (PM) rotor by directly milling slots in the original rotor and embedding PMs, thus improving the efficiency of the original motor to meet the IE4 standard. Firstly, this paper proposes the PMR process of IM, and based on this process, a Y2-132M1-6 IM is designed for remanufacturing, and the performance of the motor before and after the PMR is compared through finite-element analysis. Then, this paper researches the factors that may affect the starting performance and rated performance of the motor in the PMR design. Finally, based on the PMR design scheme, the Y2-132M1-6 IM is remanufactured into an experimental prototype. The total cost of the PMR is calculated and the performance improvement is tested through experiments.
ISSN:1996-1073