New Species Can Broaden Myelin Research: Suitability of Little Skate, <i>Leucoraja erinacea</i>

Although myelinated nervous systems are shared among 60,000 jawed vertebrates, studies aimed at understanding myelination have focused more and more on mice and zebrafish. To obtain a broader understanding of the myelination process, we examined the little skate, <i>Leucoraja erinacea</i>...

Full description

Bibliographic Details
Main Authors: Wiebke Möbius, Sophie Hümmert, Torben Ruhwedel, Alan Kuzirian, Robert Gould
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Life
Subjects:
Online Access:https://www.mdpi.com/2075-1729/11/2/136
Description
Summary:Although myelinated nervous systems are shared among 60,000 jawed vertebrates, studies aimed at understanding myelination have focused more and more on mice and zebrafish. To obtain a broader understanding of the myelination process, we examined the little skate, <i>Leucoraja erinacea</i>. The reasons behind initiating studies at this time include: the desire to study a species belonging to an out group of other jawed vertebrates; using a species with embryos accessible throughout development; the availability of genome sequences; and the likelihood that mammalian antibodies recognize homologs in the chosen species. We report that the morphological features of myelination in a skate hatchling, a stage that supports complex behavioral repertoires needed for survival, are highly similar in terms of: appearances of myelinating oligodendrocytes (CNS) and Schwann cells (PNS); the way their levels of myelination conform to axon caliber; and their identity in terms of nodal and paranodal specializations. These features provide a core for further studies to determine: axon–myelinating cell communication; the structures of the proteins and lipids upon which myelinated fibers are formed; the pathways used to transport these molecules to sites of myelin assembly and maintenance; and the gene regulatory networks that control their expressions.
ISSN:2075-1729