Restoration of Midwest Oak Barrens: Structural Manipulation or Process-only?

We investigated vegetation responses in terms of canopy, ground-layer diversity, and ecological species groups using two restoration treatments at two degraded oak barren and savanna sites in central Wisconsin, USA. The two restoration models tested were (1) process-only, which reintroduced fire in...

Full description

Bibliographic Details
Main Authors: Scott Nielsen, Chad Kirschbaum, Alan Haney
Format: Article
Language:English
Published: Resilience Alliance 2003-12-01
Series:Ecology and Society
Subjects:
Online Access:http://www.ecologyandsociety.org/vol7/iss2/art10/
Description
Summary:We investigated vegetation responses in terms of canopy, ground-layer diversity, and ecological species groups using two restoration treatments at two degraded oak barren and savanna sites in central Wisconsin, USA. The two restoration models tested were (1) process-only, which reintroduced fire in the form of prescribed burning, and (2) structural manipulation, which used prescribed burning following selective timber removal. Both methods have been widely promoted, debated, and investigated in the fire-prone ecosystems of western North America, but they have not been studied in midwestern ecosystems. Vegetation was monitored in permanent quadrats prior to and following treatment applications. All treatment responses were compared against trends at control sites. We used diversity, canopy, and cover estimates within ecological groups between pre- and post-treatment periods as our response. Effect size was calculated, and the statistical significance of effects was determined using one-factor analysis of variance. Following treatments, canopy levels were restored to prior savanna levels with structural manipulation, but failed to respond to process-only approaches. Likewise, multiple positive responses were detected in the ground layer with structural manipulation, but few with process-only treatments. Despite initial responses, ground-layer restoration appears to be constrained by the dominance of Pennsylvania sedge (Carex pensylvanica). Many savanna forbs, legumes, and C4 graminoids were missing. We presume that 70 yr of fire suppression and associated succession to oak woodlands were largely responsible for sedge conversion and the loss of savanna species. Despite observed limitations, structural manipulation treatments appeared to be more effective than process-only approaches. Sites with holdover savanna species that have not been dominated by sedge should be targeted for immediate restoration before further losses occur. Further investigation of sedge mat thresholds and long-term restoration dynamics is required.
ISSN:1708-3087