Topological Information Data Analysis

This paper presents methods that quantify the structure of statistical interactions within a given data set, and were applied in a previous article. It establishes new results on the <i>k</i>-multivariate mutual-information (<inline-formula> <math display="inline">...

Full description

Bibliographic Details
Main Authors: Pierre Baudot, Monica Tapia, Daniel Bennequin, Jean-Marc Goaillard
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/21/9/869
_version_ 1798038537466019840
author Pierre Baudot
Monica Tapia
Daniel Bennequin
Jean-Marc Goaillard
author_facet Pierre Baudot
Monica Tapia
Daniel Bennequin
Jean-Marc Goaillard
author_sort Pierre Baudot
collection DOAJ
description This paper presents methods that quantify the structure of statistical interactions within a given data set, and were applied in a previous article. It establishes new results on the <i>k</i>-multivariate mutual-information (<inline-formula> <math display="inline"> <semantics> <msub> <mi>I</mi> <mi>k</mi> </msub> </semantics> </math> </inline-formula>) inspired by the topological formulation of Information introduced in a serie of studies. In particular, we show that the vanishing of all <inline-formula> <math display="inline"> <semantics> <msub> <mi>I</mi> <mi>k</mi> </msub> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mo>&#8804;</mo> <mi>k</mi> <mo>&#8804;</mo> <mi>n</mi> </mrow> </semantics> </math> </inline-formula> of <i>n</i> random variables is equivalent to their statistical independence. Pursuing the work of Hu Kuo Ting and Te Sun Han, we show that information functions provide co-ordinates for binary variables, and that they are analytically independent from the probability simplex for any set of finite variables. The maximal positive <inline-formula> <math display="inline"> <semantics> <msub> <mi>I</mi> <mi>k</mi> </msub> </semantics> </math> </inline-formula> identifies the variables that co-vary the most in the population, whereas the minimal negative <inline-formula> <math display="inline"> <semantics> <msub> <mi>I</mi> <mi>k</mi> </msub> </semantics> </math> </inline-formula> identifies synergistic clusters and the variables that differentiate&#8722;segregate the most in the population. Finite data size effects and estimation biases severely constrain the effective computation of the information topology on data, and we provide simple statistical tests for the undersampling bias and the k-dependences. We give an example of application of these methods to genetic expression and unsupervised cell-type classification. The methods unravel biologically relevant subtypes, with a sample size of 41 genes and with few errors. It establishes generic basic methods to quantify the epigenetic information storage and a unified epigenetic unsupervised learning formalism. We propose that higher-order statistical interactions and non-identically distributed variables are constitutive characteristics of biological systems that should be estimated in order to unravel their significant statistical structure and diversity. The topological information data analysis presented here allows for precisely estimating this higher-order structure characteristic of biological systems.
first_indexed 2024-04-11T21:41:33Z
format Article
id doaj.art-e55e50d7460c4767a5d8f2d4fee2468f
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-11T21:41:33Z
publishDate 2019-09-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-e55e50d7460c4767a5d8f2d4fee2468f2022-12-22T04:01:35ZengMDPI AGEntropy1099-43002019-09-0121986910.3390/e21090869e21090869Topological Information Data AnalysisPierre Baudot0Monica Tapia1Daniel Bennequin2Jean-Marc Goaillard3Inserm UNIS UMR1072—Université Aix-Marseille, 13015 Marseille, FranceInserm UNIS UMR1072—Université Aix-Marseille, 13015 Marseille, FranceInstitut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), 75013 Paris, FranceInserm UNIS UMR1072—Université Aix-Marseille, 13015 Marseille, FranceThis paper presents methods that quantify the structure of statistical interactions within a given data set, and were applied in a previous article. It establishes new results on the <i>k</i>-multivariate mutual-information (<inline-formula> <math display="inline"> <semantics> <msub> <mi>I</mi> <mi>k</mi> </msub> </semantics> </math> </inline-formula>) inspired by the topological formulation of Information introduced in a serie of studies. In particular, we show that the vanishing of all <inline-formula> <math display="inline"> <semantics> <msub> <mi>I</mi> <mi>k</mi> </msub> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mo>&#8804;</mo> <mi>k</mi> <mo>&#8804;</mo> <mi>n</mi> </mrow> </semantics> </math> </inline-formula> of <i>n</i> random variables is equivalent to their statistical independence. Pursuing the work of Hu Kuo Ting and Te Sun Han, we show that information functions provide co-ordinates for binary variables, and that they are analytically independent from the probability simplex for any set of finite variables. The maximal positive <inline-formula> <math display="inline"> <semantics> <msub> <mi>I</mi> <mi>k</mi> </msub> </semantics> </math> </inline-formula> identifies the variables that co-vary the most in the population, whereas the minimal negative <inline-formula> <math display="inline"> <semantics> <msub> <mi>I</mi> <mi>k</mi> </msub> </semantics> </math> </inline-formula> identifies synergistic clusters and the variables that differentiate&#8722;segregate the most in the population. Finite data size effects and estimation biases severely constrain the effective computation of the information topology on data, and we provide simple statistical tests for the undersampling bias and the k-dependences. We give an example of application of these methods to genetic expression and unsupervised cell-type classification. The methods unravel biologically relevant subtypes, with a sample size of 41 genes and with few errors. It establishes generic basic methods to quantify the epigenetic information storage and a unified epigenetic unsupervised learning formalism. We propose that higher-order statistical interactions and non-identically distributed variables are constitutive characteristics of biological systems that should be estimated in order to unravel their significant statistical structure and diversity. The topological information data analysis presented here allows for precisely estimating this higher-order structure characteristic of biological systems.https://www.mdpi.com/1099-4300/21/9/869information theorycohomologyinformation categorytopological data analysisgenetic expressionepigeneticsmultivariate mutual-informationsynergystatistical independence
spellingShingle Pierre Baudot
Monica Tapia
Daniel Bennequin
Jean-Marc Goaillard
Topological Information Data Analysis
Entropy
information theory
cohomology
information category
topological data analysis
genetic expression
epigenetics
multivariate mutual-information
synergy
statistical independence
title Topological Information Data Analysis
title_full Topological Information Data Analysis
title_fullStr Topological Information Data Analysis
title_full_unstemmed Topological Information Data Analysis
title_short Topological Information Data Analysis
title_sort topological information data analysis
topic information theory
cohomology
information category
topological data analysis
genetic expression
epigenetics
multivariate mutual-information
synergy
statistical independence
url https://www.mdpi.com/1099-4300/21/9/869
work_keys_str_mv AT pierrebaudot topologicalinformationdataanalysis
AT monicatapia topologicalinformationdataanalysis
AT danielbennequin topologicalinformationdataanalysis
AT jeanmarcgoaillard topologicalinformationdataanalysis