Summary: | Both microbial decomposition and oxidative deterioration contribute to the qualitative degradation of fresh or minimally preserved fish, which negatively impacts the shelf-life of fish, especially those with dark flesh like mackerel. It is becoming more typical to use edible coatings to preserve the freshness of fish products. Herein, the effects of a rice starch (RS) based coating incorporated with dried crude, aqueous Mon-pu (<i>Glochidion wallichianum</i>) leaf extract (MPE) at varying concentrations (0, 0.02, 0.1, 0.5, and 1.0% <i>w</i>/<i>w</i>) on the quality characteristics of mackerel (<i>Auxis thazard</i>) slices during storage at 4 °C were investigated. Uncoated slices had a shelf-life of 6 days, whereas samples coated with RS and 0.5% MPE extended the shelf-life to 9 days by keeping the overall microbiological quality below the permitted level of 6 log CFU/g. The changes in thiobarbituric acid reactive substances (TBARS; <2 mg malondialdehyde equivalent/kg), propanal content, heme iron degradation, myoglobin redox instability, and surface discoloration (<i>a</i>* value and total color difference; ΔE) can all be delayed by this coating condition. Additionally, the RS-MPE coating can maintain the sensory quality of refrigerated mackerel slices and preserve the textural property (water holding capacity and hardness), as well as postpone the development of an off-odor as indicated by lowered contents of total volatile base-nitrogen (TVB-N; not exceeding the acceptable limit of 25 mg/100 g) and trimethylamine (TMA; not exceeding the acceptable limit of 10 mg/100 g). Therefore, a biopreservative coating made of RS and MPE, especially at 0.5%, can be employed to extend the shelf-life of refrigerated mackerel slices up to 9 days.
|