Variational data assimilation with the YAO platform for hydrological forecasting
In this study data assimilation based on variational assimilation was implemented with the HBV hydrological model using the YAO platform of University Pierre and Marie Curie (France). The principle of the variational assimilation is to consider the model state variables as control variables and opti...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2014-09-01
|
Series: | Proceedings of the International Association of Hydrological Sciences |
Online Access: | https://www.proc-iahs.net/364/3/2014/piahs-364-3-2014.pdf |
_version_ | 1819112066965831680 |
---|---|
author | A. Abbaris H. Dakhlaoui H. Dakhlaoui S. Thiria Z. Bargaoui |
author_facet | A. Abbaris H. Dakhlaoui H. Dakhlaoui S. Thiria Z. Bargaoui |
author_sort | A. Abbaris |
collection | DOAJ |
description | In this study data assimilation based on variational assimilation was implemented with the HBV hydrological model using the YAO platform of University Pierre and Marie Curie (France). The principle of the variational assimilation is to consider the model state variables as control variables and optimise them by minimizing a cost function measuring the disagreement between observations and model simulations. The variational assimilation is used for the hydrological forecasting. In this case four state variables of the rainfall–runoff model HBV (those related to soil water content in the water balance tank and to water contents in rooting tanks) are considered as control variables. They were updated through the 4D-VAR procedure using daily discharge incoming information. The Serein basin in France was studied and a high level of forecasting accuracy was obtained with variational assimilation allowing flood anticipation. |
first_indexed | 2024-12-22T04:07:36Z |
format | Article |
id | doaj.art-e58d0014984845369b04a1a4a48c4069 |
institution | Directory Open Access Journal |
issn | 2199-8981 2199-899X |
language | English |
last_indexed | 2024-12-22T04:07:36Z |
publishDate | 2014-09-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Proceedings of the International Association of Hydrological Sciences |
spelling | doaj.art-e58d0014984845369b04a1a4a48c40692022-12-21T18:39:36ZengCopernicus PublicationsProceedings of the International Association of Hydrological Sciences2199-89812199-899X2014-09-013643810.5194/piahs-364-3-2014Variational data assimilation with the YAO platform for hydrological forecastingA. Abbaris0H. Dakhlaoui1H. Dakhlaoui2S. Thiria3Z. Bargaoui4LOCEAN, Université Pierre et Marie Curie, Institut Pierre Simon Laplace, 4, place Jussieu 75252 Paris Cedex 05, FranceENAU, Université de Carthage, 20 Rue El Qods, 2026 Sidi Bou Saïd, Tunis, TunisiaLMHE, Université Tunis El-Manar, Ecole Nationale d’Ingénieurs de Tunis, BP 37, 1003 Tunis le Belvédère, TunisiaLOCEAN, Université Pierre et Marie Curie, Institut Pierre Simon Laplace, 4, place Jussieu 75252 Paris Cedex 05, FranceLMHE, Université Tunis El-Manar, Ecole Nationale d’Ingénieurs de Tunis, BP 37, 1003 Tunis le Belvédère, TunisiaIn this study data assimilation based on variational assimilation was implemented with the HBV hydrological model using the YAO platform of University Pierre and Marie Curie (France). The principle of the variational assimilation is to consider the model state variables as control variables and optimise them by minimizing a cost function measuring the disagreement between observations and model simulations. The variational assimilation is used for the hydrological forecasting. In this case four state variables of the rainfall–runoff model HBV (those related to soil water content in the water balance tank and to water contents in rooting tanks) are considered as control variables. They were updated through the 4D-VAR procedure using daily discharge incoming information. The Serein basin in France was studied and a high level of forecasting accuracy was obtained with variational assimilation allowing flood anticipation.https://www.proc-iahs.net/364/3/2014/piahs-364-3-2014.pdf |
spellingShingle | A. Abbaris H. Dakhlaoui H. Dakhlaoui S. Thiria Z. Bargaoui Variational data assimilation with the YAO platform for hydrological forecasting Proceedings of the International Association of Hydrological Sciences |
title | Variational data assimilation with the YAO platform for hydrological forecasting |
title_full | Variational data assimilation with the YAO platform for hydrological forecasting |
title_fullStr | Variational data assimilation with the YAO platform for hydrological forecasting |
title_full_unstemmed | Variational data assimilation with the YAO platform for hydrological forecasting |
title_short | Variational data assimilation with the YAO platform for hydrological forecasting |
title_sort | variational data assimilation with the yao platform for hydrological forecasting |
url | https://www.proc-iahs.net/364/3/2014/piahs-364-3-2014.pdf |
work_keys_str_mv | AT aabbaris variationaldataassimilationwiththeyaoplatformforhydrologicalforecasting AT hdakhlaoui variationaldataassimilationwiththeyaoplatformforhydrologicalforecasting AT hdakhlaoui variationaldataassimilationwiththeyaoplatformforhydrologicalforecasting AT sthiria variationaldataassimilationwiththeyaoplatformforhydrologicalforecasting AT zbargaoui variationaldataassimilationwiththeyaoplatformforhydrologicalforecasting |