Existence and multiplicity of homoclinic solutions for a second-order Hamiltonian system

In this paper, we find new conditions to ensure the existence of one nontrivial homoclinic solution and also infinitely many homoclinic solutions for the second order Hamiltonian system $$ \ddot{u}-a(t)|u|^{p-2}u+\nabla W(t,u)=0,\qquad t\in \mathbb{R}, $$ where $p>2$, $a\in C(\mathbb{R}, \mathbb...

Full description

Bibliographic Details
Main Author: Yiwei Ye
Format: Article
Language:English
Published: University of Szeged 2019-02-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6918
_version_ 1797830542900592640
author Yiwei Ye
author_facet Yiwei Ye
author_sort Yiwei Ye
collection DOAJ
description In this paper, we find new conditions to ensure the existence of one nontrivial homoclinic solution and also infinitely many homoclinic solutions for the second order Hamiltonian system $$ \ddot{u}-a(t)|u|^{p-2}u+\nabla W(t,u)=0,\qquad t\in \mathbb{R}, $$ where $p>2$, $a\in C(\mathbb{R}, \mathbb{R})$ with $\inf_{t\in \mathbb{R}}a(t)>0$ and $\int_\mathbb{R}\big(\frac{1}{a(t)}\big)^{2/(p-2)} dt<+\infty$, and $W(t,x)$ is, as $|x|\rightarrow \infty$, superquadratic or subquadratic with certain hypotheses different from those used in previous related studies. Our approach is variational and we use the Cerami condition instead of the Palais–Smale one for deformation arguments.
first_indexed 2024-04-09T13:37:46Z
format Article
id doaj.art-e59971b0db5149528f3c028794d75775
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:37:46Z
publishDate 2019-02-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-e59971b0db5149528f3c028794d757752023-05-09T07:53:09ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752019-02-0120191112610.14232/ejqtde.2019.1.116918Existence and multiplicity of homoclinic solutions for a second-order Hamiltonian systemYiwei Ye0Department of Mathematics, Chongqing Normal University, Chongqing, PR ChinaIn this paper, we find new conditions to ensure the existence of one nontrivial homoclinic solution and also infinitely many homoclinic solutions for the second order Hamiltonian system $$ \ddot{u}-a(t)|u|^{p-2}u+\nabla W(t,u)=0,\qquad t\in \mathbb{R}, $$ where $p>2$, $a\in C(\mathbb{R}, \mathbb{R})$ with $\inf_{t\in \mathbb{R}}a(t)>0$ and $\int_\mathbb{R}\big(\frac{1}{a(t)}\big)^{2/(p-2)} dt<+\infty$, and $W(t,x)$ is, as $|x|\rightarrow \infty$, superquadratic or subquadratic with certain hypotheses different from those used in previous related studies. Our approach is variational and we use the Cerami condition instead of the Palais–Smale one for deformation arguments.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6918homoclinic solutionshamiltonian systemsvariational methodsweighted $l^p$ space
spellingShingle Yiwei Ye
Existence and multiplicity of homoclinic solutions for a second-order Hamiltonian system
Electronic Journal of Qualitative Theory of Differential Equations
homoclinic solutions
hamiltonian systems
variational methods
weighted $l^p$ space
title Existence and multiplicity of homoclinic solutions for a second-order Hamiltonian system
title_full Existence and multiplicity of homoclinic solutions for a second-order Hamiltonian system
title_fullStr Existence and multiplicity of homoclinic solutions for a second-order Hamiltonian system
title_full_unstemmed Existence and multiplicity of homoclinic solutions for a second-order Hamiltonian system
title_short Existence and multiplicity of homoclinic solutions for a second-order Hamiltonian system
title_sort existence and multiplicity of homoclinic solutions for a second order hamiltonian system
topic homoclinic solutions
hamiltonian systems
variational methods
weighted $l^p$ space
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6918
work_keys_str_mv AT yiweiye existenceandmultiplicityofhomoclinicsolutionsforasecondorderhamiltoniansystem