Mobile Robot Path Optimization Technique Based on Reinforcement Learning Algorithm in Warehouse Environment

This paper reports on the use of reinforcement learning technology for optimizing mobile robot paths in a warehouse environment with automated logistics. First, we compared the results of experiments conducted using two basic algorithms to identify the fundamentals required for planning the path of...

Full description

Bibliographic Details
Main Authors: HyeokSoo Lee, Jongpil Jeong
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/3/1209
Description
Summary:This paper reports on the use of reinforcement learning technology for optimizing mobile robot paths in a warehouse environment with automated logistics. First, we compared the results of experiments conducted using two basic algorithms to identify the fundamentals required for planning the path of a mobile robot and utilizing reinforcement learning techniques for path optimization. The algorithms were tested using a path optimization simulation of a mobile robot in same experimental environment and conditions. Thereafter, we attempted to improve the previous experiment and conducted additional experiments to confirm the improvement. The experimental results helped us understand the characteristics and differences in the reinforcement learning algorithm. The findings of this study will facilitate our understanding of the basic concepts of reinforcement learning for further studies on more complex and realistic path optimization algorithm development.
ISSN:2076-3417