Priming with copper-chitosan nanoparticles elicit tolerance against PEG-induced hyperosmotic stress and salinity in wheat
Abstract In this study Cu-chitosan nanoparticles (Cu-CNP) have been employed as eco-friendly and safer priming agents to induce salt and PEG-induced hyperosmotic stress tolerance in wheat seedlings. Seed priming is a facile on-farm stress management technique that requires a little amount of priming...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2022-04-01
|
Series: | BMC Chemistry |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13065-022-00813-1 |
_version_ | 1818772334225391616 |
---|---|
author | Tahir Farooq Zaib Un Nisa Amjad Hameed Toheed Ahmed Arruje Hameed |
author_facet | Tahir Farooq Zaib Un Nisa Amjad Hameed Toheed Ahmed Arruje Hameed |
author_sort | Tahir Farooq |
collection | DOAJ |
description | Abstract In this study Cu-chitosan nanoparticles (Cu-CNP) have been employed as eco-friendly and safer priming agents to induce salt and PEG-induced hyperosmotic stress tolerance in wheat seedlings. Seed priming is a facile on-farm stress management technique that requires a little amount of priming agent and minimizes the eco-toxicological effects on soil fertility. The wheat seeds were primed with 0.12% and 0.16% Cu-CNP for eight hours and were allowed to germinate under normal, PEG-induced hyperosmotic stress (15% PEG-6000 – 3.0 Mpa) and salt stress (150 mM). For comparison, non-primed and hydro-primed seeds were also allowed to germinate as control under the same conditions. The biochemical analyses suggested the priming treatments enhanced the POD activity under salt stress but it was decreased under PEG-induced hyperosmotic stress. Priming with 0.12% Cu-CNP induced a significant increase in CAT while the opposite effect was observed in 0.16% treated seedling under stress and non-stress conditions. Both priming treatments did not allow the over-expression of SOD under both stress conditions. The total phenolic contents were also decreased significantly under all conditions. Except for priming with 0.16% Cu-CNP under PEG-induced hyperosmotic stress, a suppression in MDA was observed under both stress conditions. Surprisingly, the Cu-CNP priming induced a significant increase in β-carotenoids, total carotenoids, chlorophyll a, b and total chlorophyll under normal and stress conditions. In conclusion, the controlled expression of enzymatic antioxidants, low contents of non-enzymatic antioxidants and suppression of MDA mirror the stress mitigating role of Cu-CNP against PEG-induced hyperosmotic stress and salinity. The stress-insulating potential has also been reinforced by the enhanced production of plant and photosynthetic pigments. All these priming-induced biochemical changes produced positive effects on growth and germinating parameters in wheat seedlings under PEG-induced hyperosmotic stress as well as salinity. |
first_indexed | 2024-12-18T10:07:42Z |
format | Article |
id | doaj.art-e5a2e90f8fd44463b470c05c65973ec7 |
institution | Directory Open Access Journal |
issn | 2661-801X |
language | English |
last_indexed | 2024-12-18T10:07:42Z |
publishDate | 2022-04-01 |
publisher | BMC |
record_format | Article |
series | BMC Chemistry |
spelling | doaj.art-e5a2e90f8fd44463b470c05c65973ec72022-12-21T21:11:30ZengBMCBMC Chemistry2661-801X2022-04-0116111310.1186/s13065-022-00813-1Priming with copper-chitosan nanoparticles elicit tolerance against PEG-induced hyperosmotic stress and salinity in wheatTahir Farooq0Zaib Un Nisa1Amjad Hameed2Toheed Ahmed3Arruje Hameed4Department of Applied Chemistry, Government College UniversityDepartment of Biochemistry, Government College UniversityNuclear Institute for Agriculture and Biology (NIAB)Department of Applied Chemistry, Government College UniversityDepartment of Biochemistry, Government College UniversityAbstract In this study Cu-chitosan nanoparticles (Cu-CNP) have been employed as eco-friendly and safer priming agents to induce salt and PEG-induced hyperosmotic stress tolerance in wheat seedlings. Seed priming is a facile on-farm stress management technique that requires a little amount of priming agent and minimizes the eco-toxicological effects on soil fertility. The wheat seeds were primed with 0.12% and 0.16% Cu-CNP for eight hours and were allowed to germinate under normal, PEG-induced hyperosmotic stress (15% PEG-6000 – 3.0 Mpa) and salt stress (150 mM). For comparison, non-primed and hydro-primed seeds were also allowed to germinate as control under the same conditions. The biochemical analyses suggested the priming treatments enhanced the POD activity under salt stress but it was decreased under PEG-induced hyperosmotic stress. Priming with 0.12% Cu-CNP induced a significant increase in CAT while the opposite effect was observed in 0.16% treated seedling under stress and non-stress conditions. Both priming treatments did not allow the over-expression of SOD under both stress conditions. The total phenolic contents were also decreased significantly under all conditions. Except for priming with 0.16% Cu-CNP under PEG-induced hyperosmotic stress, a suppression in MDA was observed under both stress conditions. Surprisingly, the Cu-CNP priming induced a significant increase in β-carotenoids, total carotenoids, chlorophyll a, b and total chlorophyll under normal and stress conditions. In conclusion, the controlled expression of enzymatic antioxidants, low contents of non-enzymatic antioxidants and suppression of MDA mirror the stress mitigating role of Cu-CNP against PEG-induced hyperosmotic stress and salinity. The stress-insulating potential has also been reinforced by the enhanced production of plant and photosynthetic pigments. All these priming-induced biochemical changes produced positive effects on growth and germinating parameters in wheat seedlings under PEG-induced hyperosmotic stress as well as salinity.https://doi.org/10.1186/s13065-022-00813-1Wheat primingCu-chitosan nanoparticlesPEG-induced hyperosmotic stressSalinityStress tolerance |
spellingShingle | Tahir Farooq Zaib Un Nisa Amjad Hameed Toheed Ahmed Arruje Hameed Priming with copper-chitosan nanoparticles elicit tolerance against PEG-induced hyperosmotic stress and salinity in wheat BMC Chemistry Wheat priming Cu-chitosan nanoparticles PEG-induced hyperosmotic stress Salinity Stress tolerance |
title | Priming with copper-chitosan nanoparticles elicit tolerance against PEG-induced hyperosmotic stress and salinity in wheat |
title_full | Priming with copper-chitosan nanoparticles elicit tolerance against PEG-induced hyperosmotic stress and salinity in wheat |
title_fullStr | Priming with copper-chitosan nanoparticles elicit tolerance against PEG-induced hyperosmotic stress and salinity in wheat |
title_full_unstemmed | Priming with copper-chitosan nanoparticles elicit tolerance against PEG-induced hyperosmotic stress and salinity in wheat |
title_short | Priming with copper-chitosan nanoparticles elicit tolerance against PEG-induced hyperosmotic stress and salinity in wheat |
title_sort | priming with copper chitosan nanoparticles elicit tolerance against peg induced hyperosmotic stress and salinity in wheat |
topic | Wheat priming Cu-chitosan nanoparticles PEG-induced hyperosmotic stress Salinity Stress tolerance |
url | https://doi.org/10.1186/s13065-022-00813-1 |
work_keys_str_mv | AT tahirfarooq primingwithcopperchitosannanoparticleselicittoleranceagainstpeginducedhyperosmoticstressandsalinityinwheat AT zaibunnisa primingwithcopperchitosannanoparticleselicittoleranceagainstpeginducedhyperosmoticstressandsalinityinwheat AT amjadhameed primingwithcopperchitosannanoparticleselicittoleranceagainstpeginducedhyperosmoticstressandsalinityinwheat AT toheedahmed primingwithcopperchitosannanoparticleselicittoleranceagainstpeginducedhyperosmoticstressandsalinityinwheat AT arrujehameed primingwithcopperchitosannanoparticleselicittoleranceagainstpeginducedhyperosmoticstressandsalinityinwheat |