Association of graph-based spatial features with overall survival status of glioblastoma patients

Abstract Glioblastoma is the most common malignant brain tumor with less than 15 months median survival. To aid prognosis, there is a need for decision tools that leverage diagnostic modalities such as MRI to inform survival. In this study, we examine higher-order spatial proximity characteristics f...

Full description

Bibliographic Details
Main Authors: Joonsang Lee, Shivali Narang, Juan Martinez, Ganesh Rao, Arvind Rao
Format: Article
Language:English
Published: Nature Portfolio 2023-10-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-44353-7
Description
Summary:Abstract Glioblastoma is the most common malignant brain tumor with less than 15 months median survival. To aid prognosis, there is a need for decision tools that leverage diagnostic modalities such as MRI to inform survival. In this study, we examine higher-order spatial proximity characteristics from habitats and propose two graph-based methods (minimum spanning tree and graph run-length matrix) to characterize spatial heterogeneity over tumor MRI-derived intensity habitats and assess their relationships with overall survival as well as the immune signature status of patients with glioblastoma. A data set of 74 patients was studied based on the availability of post-contrast T1-weighted and T2-weighted fluid attenuated inversion recovery (FLAIR) image data in The Cancer Image Archive (TCIA). We assessed the predictive value of MST- and GRLM-derived features from 2D images for prediction of 12-month survival status and immune signature status of patients with glioblastoma via a receiver operating characteristic curve analysis. For 12-month survival prediction using MST-based method, sensitivity and specificity were 0.82 and 0.79 respectively. For GRLM-based method, sensitivity and specificity were 0.73 and 0.77 respectively. For immune status, sensitivity and specificity were 0.91 and 0.69, respectively, for the GRLM-based method with an immune effector. Our results show that the proposed MST- and GRLM-derived features are predictive of 12-month survival status as well as the immune signature status of patients with glioblastoma. To our knowledge, this is the first application of MST- and GRLM-based proximity analyses for the study of radiologically-defined tumor habitats in glioblastoma.
ISSN:2045-2322