Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season

<p>The Svalbard archipelago, located at the Arctic sea-ice edge between 74 and 81<span class="inline-formula"><sup>∘</sup></span> N, is <span class="inline-formula">∼60</span> % covered by glaciers. The region experiences rapid variations...

Fuld beskrivelse

Bibliografiske detaljer
Main Authors: E. Barbaro, K. Koziol, M. P. Björkman, C. P. Vega, C. Zdanowicz, T. Martma, J.-C. Gallet, D. Kępski, C. Larose, B. Luks, F. Tolle, T. V. Schuler, A. Uszczyk, A. Spolaor
Format: Article
Sprog:English
Udgivet: Copernicus Publications 2021-03-01
Serier:Atmospheric Chemistry and Physics
Online adgang:https://acp.copernicus.org/articles/21/3163/2021/acp-21-3163-2021.pdf
_version_ 1831633961047031808
author E. Barbaro
E. Barbaro
K. Koziol
M. P. Björkman
C. P. Vega
C. P. Vega
C. Zdanowicz
T. Martma
J.-C. Gallet
D. Kępski
C. Larose
B. Luks
F. Tolle
T. V. Schuler
T. V. Schuler
A. Uszczyk
A. Spolaor
A. Spolaor
author_facet E. Barbaro
E. Barbaro
K. Koziol
M. P. Björkman
C. P. Vega
C. P. Vega
C. Zdanowicz
T. Martma
J.-C. Gallet
D. Kępski
C. Larose
B. Luks
F. Tolle
T. V. Schuler
T. V. Schuler
A. Uszczyk
A. Spolaor
A. Spolaor
author_sort E. Barbaro
collection DOAJ
description <p>The Svalbard archipelago, located at the Arctic sea-ice edge between 74 and 81<span class="inline-formula"><sup>∘</sup></span> N, is <span class="inline-formula">∼60</span> % covered by glaciers. The region experiences rapid variations in atmospheric flow during the snow season (from late September to May) and can be affected by air advected from both lower and higher latitudes, which likely impact the chemical composition of snowfall. While long-term changes in Svalbard snow chemistry have been documented in ice cores drilled from two high-elevation glaciers, the spatial variability of the snowpack composition across Svalbard is comparatively poorly understood. Here, we report the results of the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on seven glaciers across the archipelago. At each glacier, three snowpits were sampled along the altitudinal profiles and the collected samples were analysed for major ions (<span class="inline-formula">Ca<sup>2+</sup></span>, <span class="inline-formula">K<sup>+</sup></span>, <span class="inline-formula">Na<sup>+</sup></span>, <span class="inline-formula">Mg<sup>2+</sup></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3226c502fdca30fe88bf9305df4b3716"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00001.svg" width="24pt" height="15pt" src="acp-21-3163-2021-ie00001.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="40da026c69d6bb7b362f8aefb7758b92"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00002.svg" width="29pt" height="17pt" src="acp-21-3163-2021-ie00002.png"/></svg:svg></span></span>, <span class="inline-formula">Br<sup>−</sup></span>, <span class="inline-formula">Cl<sup>−</sup></span>, and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="eb51cd45ba2a21283d090226a04e61ba"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00003.svg" width="25pt" height="16pt" src="acp-21-3163-2021-ie00003.png"/></svg:svg></span></span>) and stable water isotopes (<span class="inline-formula"><i>δ</i><sup>18</sup>O</span>, <span class="inline-formula"><i>δ</i><sup>2</sup>H</span>). The main aims were to investigate the natural and anthropogenic processes influencing the snowpack and to better understand the influence of atmospheric aerosol transport and deposition patterns on the snow chemical composition. The snow deposited in the southern region of Svalbard is characterized by the highest total ionic loads, mainly attributed to sea-salt particles. Both <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="c5e3e0772eea57309f236de17ca43cb8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00004.svg" width="25pt" height="16pt" src="acp-21-3163-2021-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8954cfb2fcef1f8dc372e5d7425e25d0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00005.svg" width="24pt" height="15pt" src="acp-21-3163-2021-ie00005.png"/></svg:svg></span></span> in the seasonal snowpack reflect secondary aerosol formation and post-depositional changes, resulting in very different spatial deposition patterns: <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="48a6d5724cc017ced9c974ab9a81c03a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00006.svg" width="25pt" height="16pt" src="acp-21-3163-2021-ie00006.png"/></svg:svg></span></span> has its highest loading in north-western Spitsbergen and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8b20487e53d7ab6a3bf592e9df90e3eb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00007.svg" width="24pt" height="15pt" src="acp-21-3163-2021-ie00007.png"/></svg:svg></span></span> in the south-west. The <span class="inline-formula">Br<sup>−</sup></span> enrichment in snow is highest in north-eastern glacier sites closest to areas of extensive sea-ice coverage. Spatial correlation patterns between <span class="inline-formula">Na<sup>+</sup></span> and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> suggest that the influence of long-range transport of aerosols on snow chemistry is proportionally greater above 600–700 m a.s.l.</p>
first_indexed 2024-12-19T05:45:23Z
format Article
id doaj.art-e5bee1f506534e4ca761ad57e9c93b82
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-19T05:45:23Z
publishDate 2021-03-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-e5bee1f506534e4ca761ad57e9c93b822022-12-21T20:33:52ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-03-01213163318010.5194/acp-21-3163-2021Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation seasonE. Barbaro0E. Barbaro1K. Koziol2M. P. Björkman3C. P. Vega4C. P. Vega5C. Zdanowicz6T. Martma7J.-C. Gallet8D. Kępski9C. Larose10B. Luks11F. Tolle12T. V. Schuler13T. V. Schuler14A. Uszczyk15A. Spolaor16A. Spolaor17Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170 Venice Mestre, ItalyDepartment of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, ItalyDepartment of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, PolandDepartment of Earth Sciences, University of Gothenburg, Box 460, 40530 Gothenburg, SwedenDepartment of Earth Sciences, Uppsala University, Villavägen 16, 76236 Uppsala, Swedennow at: Dirección Meteorológica de Chile, Dirección General de Aeronáutica Civil, Portales 3450, Santiago, ChileDepartment of Earth Sciences, Uppsala University, Villavägen 16, 76236 Uppsala, SwedenDepartment of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, EstoniaNorwegian Polar Institute, 9296 Tromsø, NorwayInstitute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warsaw, PolandEnvironmental MicrobialGenomics, Laboratoire Ampère, CNRS, University of Lyon, Lyon, FranceEnvironmental MicrobialGenomics, Laboratoire Ampère, CNRS, University of Lyon, Lyon, FranceUniversité de Franche-Comté, Besancon, FEMTO-ST, UMR 6174 CNRS, Besançon, FranceDepartement of Geosciences, University of Oslo, Oslo, NorwayArctic Geophysics, University Centre in Svalbard, UNIS, Longyearbyen, Svalbard, NorwayUniversity of Silesia in Katowice, Faculty of Natural Sciences, Będzińska 60, 41-200 Sosnowiec, PolandInstitute of Polar Sciences, ISP-CNR, Via Torino 155, 30170 Venice Mestre, ItalyDepartment of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy<p>The Svalbard archipelago, located at the Arctic sea-ice edge between 74 and 81<span class="inline-formula"><sup>∘</sup></span> N, is <span class="inline-formula">∼60</span> % covered by glaciers. The region experiences rapid variations in atmospheric flow during the snow season (from late September to May) and can be affected by air advected from both lower and higher latitudes, which likely impact the chemical composition of snowfall. While long-term changes in Svalbard snow chemistry have been documented in ice cores drilled from two high-elevation glaciers, the spatial variability of the snowpack composition across Svalbard is comparatively poorly understood. Here, we report the results of the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on seven glaciers across the archipelago. At each glacier, three snowpits were sampled along the altitudinal profiles and the collected samples were analysed for major ions (<span class="inline-formula">Ca<sup>2+</sup></span>, <span class="inline-formula">K<sup>+</sup></span>, <span class="inline-formula">Na<sup>+</sup></span>, <span class="inline-formula">Mg<sup>2+</sup></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3226c502fdca30fe88bf9305df4b3716"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00001.svg" width="24pt" height="15pt" src="acp-21-3163-2021-ie00001.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="40da026c69d6bb7b362f8aefb7758b92"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00002.svg" width="29pt" height="17pt" src="acp-21-3163-2021-ie00002.png"/></svg:svg></span></span>, <span class="inline-formula">Br<sup>−</sup></span>, <span class="inline-formula">Cl<sup>−</sup></span>, and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="eb51cd45ba2a21283d090226a04e61ba"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00003.svg" width="25pt" height="16pt" src="acp-21-3163-2021-ie00003.png"/></svg:svg></span></span>) and stable water isotopes (<span class="inline-formula"><i>δ</i><sup>18</sup>O</span>, <span class="inline-formula"><i>δ</i><sup>2</sup>H</span>). The main aims were to investigate the natural and anthropogenic processes influencing the snowpack and to better understand the influence of atmospheric aerosol transport and deposition patterns on the snow chemical composition. The snow deposited in the southern region of Svalbard is characterized by the highest total ionic loads, mainly attributed to sea-salt particles. Both <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="c5e3e0772eea57309f236de17ca43cb8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00004.svg" width="25pt" height="16pt" src="acp-21-3163-2021-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8954cfb2fcef1f8dc372e5d7425e25d0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00005.svg" width="24pt" height="15pt" src="acp-21-3163-2021-ie00005.png"/></svg:svg></span></span> in the seasonal snowpack reflect secondary aerosol formation and post-depositional changes, resulting in very different spatial deposition patterns: <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="48a6d5724cc017ced9c974ab9a81c03a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00006.svg" width="25pt" height="16pt" src="acp-21-3163-2021-ie00006.png"/></svg:svg></span></span> has its highest loading in north-western Spitsbergen and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8b20487e53d7ab6a3bf592e9df90e3eb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00007.svg" width="24pt" height="15pt" src="acp-21-3163-2021-ie00007.png"/></svg:svg></span></span> in the south-west. The <span class="inline-formula">Br<sup>−</sup></span> enrichment in snow is highest in north-eastern glacier sites closest to areas of extensive sea-ice coverage. Spatial correlation patterns between <span class="inline-formula">Na<sup>+</sup></span> and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> suggest that the influence of long-range transport of aerosols on snow chemistry is proportionally greater above 600–700 m a.s.l.</p>https://acp.copernicus.org/articles/21/3163/2021/acp-21-3163-2021.pdf
spellingShingle E. Barbaro
E. Barbaro
K. Koziol
M. P. Björkman
C. P. Vega
C. P. Vega
C. Zdanowicz
T. Martma
J.-C. Gallet
D. Kępski
C. Larose
B. Luks
F. Tolle
T. V. Schuler
T. V. Schuler
A. Uszczyk
A. Spolaor
A. Spolaor
Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season
Atmospheric Chemistry and Physics
title Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season
title_full Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season
title_fullStr Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season
title_full_unstemmed Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season
title_short Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season
title_sort measurement report spatial variations in ionic chemistry and water stable isotopes in the snowpack on glaciers across svalbard during the 2015 2016 snow accumulation season
url https://acp.copernicus.org/articles/21/3163/2021/acp-21-3163-2021.pdf
work_keys_str_mv AT ebarbaro measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT ebarbaro measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT kkoziol measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT mpbjorkman measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT cpvega measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT cpvega measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT czdanowicz measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT tmartma measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT jcgallet measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT dkepski measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT clarose measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT bluks measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT ftolle measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT tvschuler measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT tvschuler measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT auszczyk measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT aspolaor measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason
AT aspolaor measurementreportspatialvariationsinionicchemistryandwaterstableisotopesinthesnowpackonglaciersacrosssvalbardduringthe20152016snowaccumulationseason