Super-Resolution Imaging with Patchy Microspheres

The diffraction limit is a fundamental barrier in optical microscopy, which restricts the smallest resolvable feature size of a microscopic system. Microsphere-based microscopy has proven to be a promising tool for challenging the diffraction limit. Nevertheless, the microspheres have a low imaging...

Full description

Bibliographic Details
Main Authors: Qingqing Shang, Fen Tang, Lingya Yu, Hamid Oubaha, Darwin Caina, Songlin Yang, Sorin Melinte, Chao Zuo, Zengbo Wang, Ran Ye
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/8/11/513
Description
Summary:The diffraction limit is a fundamental barrier in optical microscopy, which restricts the smallest resolvable feature size of a microscopic system. Microsphere-based microscopy has proven to be a promising tool for challenging the diffraction limit. Nevertheless, the microspheres have a low imaging contrast in air, which hinders the application of this technique. In this work, we demonstrate that this challenge can be effectively overcome by using partially Ag-plated microspheres. The deposited Ag film acts as an aperture stop that blocks a portion of the incident beam, forming a photonic hook and an oblique near-field illumination. Such a photonic hook significantly enhanced the imaging contrast of the system, as experimentally verified by imaging the Blu-ray disc surface and colloidal particle arrays.
ISSN:2304-6732