Application of deep learning methods to predict ionosphere parameters in real time

In this paper, the previously obtained results on recognition of ionograms using deep learning are expanded to predict the parameters of the ionosphere. After the ionospheric parameters have been identified on the ionogram using deep learning in real time, we can predict the parameters for some time...

Full description

Bibliographic Details
Main Authors: Mochalov Vladimir, Mochalova Anastasia
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/56/e3sconf_strpep2020_02007.pdf
_version_ 1819291334520864768
author Mochalov Vladimir
Mochalova Anastasia
author_facet Mochalov Vladimir
Mochalova Anastasia
author_sort Mochalov Vladimir
collection DOAJ
description In this paper, the previously obtained results on recognition of ionograms using deep learning are expanded to predict the parameters of the ionosphere. After the ionospheric parameters have been identified on the ionogram using deep learning in real time, we can predict the parameters for some time ahead on the basis of the new data obtained Examples of predicting the ionosphere parameters using an artificial recurrent neural network architecture long short-term memory are given. The place of the block for predicting the parameters of the ionosphere in the system for analyzing ionospheric data using deep learning methods is shown.
first_indexed 2024-12-24T03:36:59Z
format Article
id doaj.art-e5c6b089d0cd4b7e9b88557a3052bef6
institution Directory Open Access Journal
issn 2267-1242
language English
last_indexed 2024-12-24T03:36:59Z
publishDate 2020-01-01
publisher EDP Sciences
record_format Article
series E3S Web of Conferences
spelling doaj.art-e5c6b089d0cd4b7e9b88557a3052bef62022-12-21T17:17:02ZengEDP SciencesE3S Web of Conferences2267-12422020-01-011960200710.1051/e3sconf/202019602007e3sconf_strpep2020_02007Application of deep learning methods to predict ionosphere parameters in real timeMochalov VladimirMochalova AnastasiaIn this paper, the previously obtained results on recognition of ionograms using deep learning are expanded to predict the parameters of the ionosphere. After the ionospheric parameters have been identified on the ionogram using deep learning in real time, we can predict the parameters for some time ahead on the basis of the new data obtained Examples of predicting the ionosphere parameters using an artificial recurrent neural network architecture long short-term memory are given. The place of the block for predicting the parameters of the ionosphere in the system for analyzing ionospheric data using deep learning methods is shown.https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/56/e3sconf_strpep2020_02007.pdf
spellingShingle Mochalov Vladimir
Mochalova Anastasia
Application of deep learning methods to predict ionosphere parameters in real time
E3S Web of Conferences
title Application of deep learning methods to predict ionosphere parameters in real time
title_full Application of deep learning methods to predict ionosphere parameters in real time
title_fullStr Application of deep learning methods to predict ionosphere parameters in real time
title_full_unstemmed Application of deep learning methods to predict ionosphere parameters in real time
title_short Application of deep learning methods to predict ionosphere parameters in real time
title_sort application of deep learning methods to predict ionosphere parameters in real time
url https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/56/e3sconf_strpep2020_02007.pdf
work_keys_str_mv AT mochalovvladimir applicationofdeeplearningmethodstopredictionosphereparametersinrealtime
AT mochalovaanastasia applicationofdeeplearningmethodstopredictionosphereparametersinrealtime