Assessing the Freeze/Thaw States in Arctic Circle Using FengYun-3E GNOS-R: An Initial Demonstration and Analysis

In this article, we present the first demonstration of the FengYun-3E (FY3E) Global Navigation Satellite System Occultation Sounder II-Reflectometry (GNOS-R) payload's capacity to detect near-surface soil freeze/thaw (F/T) states. This study offers an initial analysis of the F/T retrieval...

Full description

Bibliographic Details
Main Authors: Xuerui Wu, Xinqiu Ouyang, Shengli Wu, Fang Wang, Zheng Duan
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10301749/
Description
Summary:In this article, we present the first demonstration of the FengYun-3E (FY3E) Global Navigation Satellite System Occultation Sounder II-Reflectometry (GNOS-R) payload's capacity to detect near-surface soil freeze/thaw (F/T) states. This study offers an initial analysis of the F/T retrieval algorithm applied to data collected from the Arctic Circle, underscoring the GNOS-R's potential to deliver long-term near-surface soil F/T products. Data for the period extending from the launch day of GNOS-R (Day of Year (DOY) 179, 2021) to DOY 270 in 2022 were analyzed using the surface reflectivity (SR) ratio factor to discriminate F/T variations. Comparisons were made with soil moisture active passive (SMAP) F/T products, serving as an auxiliary analysis. We found a strong consistency between SR ratio factor and SMAP F/T values, with the accuracy of the F/T retrieval algorithm exceeding 60%. These findings corroborate the efficacy of the GNOS-R payload aboard FY3E in monitoring F/T patterns at higher latitudes, specifically, the Arctic Circle. The outcomes of this study will be beneficial for future F/T detection efforts using spaceborne Global Navigation Satellite System-Reflectometry payloads.
ISSN:2151-1535