Algorithm for Efficient Entropy Estimation
We consider the problem of the nonparametric entropy estimation of a stationary ergodic process. Our approach is based on the nearest-neighbor distances. We propose a broad class of metrics on the space Ω = A<sup>N</sup> of right-sided infinite sequences drawn from a finite alphabet A. T...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Yaroslavl State University
2013-01-01
|
Series: | Моделирование и анализ информационных систем |
Subjects: | |
Online Access: | http://mais-journal.ru/jour/article/view/216 |
_version_ | 1797969369365479424 |
---|---|
author | E. A. Timofeev |
author_facet | E. A. Timofeev |
author_sort | E. A. Timofeev |
collection | DOAJ |
description | We consider the problem of the nonparametric entropy estimation of a stationary ergodic process. Our approach is based on the nearest-neighbor distances. We propose a broad class of metrics on the space Ω = A<sup>N</sup> of right-sided infinite sequences drawn from a finite alphabet A. The new metric has a parameter which is a non-increasing function. We apply this metrics to nearest-neighbor entropy estimators. We prove that, under certain conditions, the estimators has a small variance. We show that a special selection of the metric parameters reduction of the estimator’s bias. The article is published in the author’s wording. |
first_indexed | 2024-04-11T03:00:03Z |
format | Article |
id | doaj.art-e5cc55a6c8924cd28c4fe98f020d3ff7 |
institution | Directory Open Access Journal |
issn | 1818-1015 2313-5417 |
language | English |
last_indexed | 2024-04-11T03:00:03Z |
publishDate | 2013-01-01 |
publisher | Yaroslavl State University |
record_format | Article |
series | Моделирование и анализ информационных систем |
spelling | doaj.art-e5cc55a6c8924cd28c4fe98f020d3ff72023-01-02T14:20:05ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172013-01-01202178185209Algorithm for Efficient Entropy EstimationE. A. Timofeev0Ярославский государственный университет им. П. Г. ДемидоваWe consider the problem of the nonparametric entropy estimation of a stationary ergodic process. Our approach is based on the nearest-neighbor distances. We propose a broad class of metrics on the space Ω = A<sup>N</sup> of right-sided infinite sequences drawn from a finite alphabet A. The new metric has a parameter which is a non-increasing function. We apply this metrics to nearest-neighbor entropy estimators. We prove that, under certain conditions, the estimators has a small variance. We show that a special selection of the metric parameters reduction of the estimator’s bias. The article is published in the author’s wording.http://mais-journal.ru/jour/article/view/216энтропиянепараметрическая оценкаметрикашармера Бернулли |
spellingShingle | E. A. Timofeev Algorithm for Efficient Entropy Estimation Моделирование и анализ информационных систем энтропия непараметрическая оценка метрика шар мера Бернулли |
title | Algorithm for Efficient Entropy Estimation |
title_full | Algorithm for Efficient Entropy Estimation |
title_fullStr | Algorithm for Efficient Entropy Estimation |
title_full_unstemmed | Algorithm for Efficient Entropy Estimation |
title_short | Algorithm for Efficient Entropy Estimation |
title_sort | algorithm for efficient entropy estimation |
topic | энтропия непараметрическая оценка метрика шар мера Бернулли |
url | http://mais-journal.ru/jour/article/view/216 |
work_keys_str_mv | AT eatimofeev algorithmforefficiententropyestimation |