Controllable Sparse Antenna Array for Adaptive Beamforming

We propose an <inline-formula> <tex-math notation="LaTeX">$l_{0}$ </tex-math></inline-formula>-norm constrained normalized least-mean-square (CNLMS) adaptive beamforming algorithm for controllable sparse antenna arrays. To control the sparsity of the antenna array,...

Full description

Bibliographic Details
Main Authors: Wanlu Shi, Yingsong Li, Luyu Zhao, Xiaoguang Liu
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8598876/
_version_ 1818427938228404224
author Wanlu Shi
Yingsong Li
Luyu Zhao
Xiaoguang Liu
author_facet Wanlu Shi
Yingsong Li
Luyu Zhao
Xiaoguang Liu
author_sort Wanlu Shi
collection DOAJ
description We propose an <inline-formula> <tex-math notation="LaTeX">$l_{0}$ </tex-math></inline-formula>-norm constrained normalized least-mean-square (CNLMS) adaptive beamforming algorithm for controllable sparse antenna arrays. To control the sparsity of the antenna array, an <inline-formula> <tex-math notation="LaTeX">$l_{0}$ </tex-math></inline-formula>-norm penalty is used as a constraint in the CNLMS algorithm. The proposed algorithm inherits the advantages of the CNLMS algorithm in beamforming. The <inline-formula> <tex-math notation="LaTeX">$l_{0}$ </tex-math></inline-formula>-norm constraint can force the quantities of antennas to a certain number to control the sparsity by selecting a suitable parameter. In addition, the proposed algorithm accelerates the convergence process compared with the existing algorithms in sparse array beamforming, and its convergence is presented in this paper. To reduce the computation burden, an approximating <inline-formula> <tex-math notation="LaTeX">$l_{0}$ </tex-math></inline-formula>-norm method is employed. The performance of the proposed algorithm is analyzed through simulations for various array configurations.
first_indexed 2024-12-14T14:53:40Z
format Article
id doaj.art-e5cece65c9a34672af6cb8d8c1acee89
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-12-14T14:53:40Z
publishDate 2019-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-e5cece65c9a34672af6cb8d8c1acee892022-12-21T22:57:04ZengIEEEIEEE Access2169-35362019-01-0176412642310.1109/ACCESS.2018.28898778598876Controllable Sparse Antenna Array for Adaptive BeamformingWanlu Shi0Yingsong Li1https://orcid.org/0000-0003-4175-8945Luyu Zhao2https://orcid.org/0000-0001-8981-9829Xiaoguang Liu3College of Information and Communication Engineering, Harbin Engineering University, Harbin, ChinaCollege of Information and Communication Engineering, Harbin Engineering University, Harbin, ChinaKey Laboratory of Antennas and Microwave Technologies, Xidian University, Xi&#x2019;an, ChinaElectrical and Computer Engineering, University of California at Davis, Davis, CA, USAWe propose an <inline-formula> <tex-math notation="LaTeX">$l_{0}$ </tex-math></inline-formula>-norm constrained normalized least-mean-square (CNLMS) adaptive beamforming algorithm for controllable sparse antenna arrays. To control the sparsity of the antenna array, an <inline-formula> <tex-math notation="LaTeX">$l_{0}$ </tex-math></inline-formula>-norm penalty is used as a constraint in the CNLMS algorithm. The proposed algorithm inherits the advantages of the CNLMS algorithm in beamforming. The <inline-formula> <tex-math notation="LaTeX">$l_{0}$ </tex-math></inline-formula>-norm constraint can force the quantities of antennas to a certain number to control the sparsity by selecting a suitable parameter. In addition, the proposed algorithm accelerates the convergence process compared with the existing algorithms in sparse array beamforming, and its convergence is presented in this paper. To reduce the computation burden, an approximating <inline-formula> <tex-math notation="LaTeX">$l_{0}$ </tex-math></inline-formula>-norm method is employed. The performance of the proposed algorithm is analyzed through simulations for various array configurations.https://ieeexplore.ieee.org/document/8598876/<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l</italic>₀-normsparse controllable arrayNLMS algorithmconstrained adaptive beamforming
spellingShingle Wanlu Shi
Yingsong Li
Luyu Zhao
Xiaoguang Liu
Controllable Sparse Antenna Array for Adaptive Beamforming
IEEE Access
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l</italic>₀-norm
sparse controllable array
NLMS algorithm
constrained adaptive beamforming
title Controllable Sparse Antenna Array for Adaptive Beamforming
title_full Controllable Sparse Antenna Array for Adaptive Beamforming
title_fullStr Controllable Sparse Antenna Array for Adaptive Beamforming
title_full_unstemmed Controllable Sparse Antenna Array for Adaptive Beamforming
title_short Controllable Sparse Antenna Array for Adaptive Beamforming
title_sort controllable sparse antenna array for adaptive beamforming
topic <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l</italic>₀-norm
sparse controllable array
NLMS algorithm
constrained adaptive beamforming
url https://ieeexplore.ieee.org/document/8598876/
work_keys_str_mv AT wanlushi controllablesparseantennaarrayforadaptivebeamforming
AT yingsongli controllablesparseantennaarrayforadaptivebeamforming
AT luyuzhao controllablesparseantennaarrayforadaptivebeamforming
AT xiaoguangliu controllablesparseantennaarrayforadaptivebeamforming