Gene Regulatory Network Inference: Connecting Plant Biology and Mathematical Modeling

Plant responses to environmental and intrinsic signals are tightly controlled by multiple transcription factors (TFs). These TFs and their regulatory connections form gene regulatory networks (GRNs), which provide a blueprint of the transcriptional regulations underlying plant development and enviro...

Full description

Bibliographic Details
Main Authors: Lisa Van den Broeck, Max Gordon, Dirk Inzé, Cranos Williams, Rosangela Sozzani
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-05-01
Series:Frontiers in Genetics
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fgene.2020.00457/full
Description
Summary:Plant responses to environmental and intrinsic signals are tightly controlled by multiple transcription factors (TFs). These TFs and their regulatory connections form gene regulatory networks (GRNs), which provide a blueprint of the transcriptional regulations underlying plant development and environmental responses. This review provides examples of experimental methodologies commonly used to identify regulatory interactions and generate GRNs. Additionally, this review describes network inference techniques that leverage gene expression data to predict regulatory interactions. These computational and experimental methodologies yield complex networks that can identify new regulatory interactions, driving novel hypotheses. Biological properties that contribute to the complexity of GRNs are also described in this review. These include network topology, network size, transient binding of TFs to DNA, and competition between multiple upstream regulators. Finally, this review highlights the potential of machine learning approaches to leverage gene expression data to predict phenotypic outputs.
ISSN:1664-8021