Validation of the RapidArc delivery system using a volumetric phantom as per task group report 119 of the American association of physicists in medicine

Aim: This study validated the RapidArc (RA) delivery using a volumetric ArcCHECK phantom as per the guidelines proposed in Task Group Report 119 from the American Association of Physicists in Medicine Task group 119 (AAPM TG 119). This study also investigated the impact of the Acuros XB (AXB) algori...

Full description

Bibliographic Details
Main Authors: Lalit Kumar, Girigesh Yadav, Vimal Kishore, Manindra Bhushan, Munish Gairola, Deepak Tripathi
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2019-01-01
Series:Journal of Medical Physics
Subjects:
Online Access:http://www.jmp.org.in/article.asp?issn=0971-6203;year=2019;volume=44;issue=2;spage=126;epage=134;aulast=Kumar
Description
Summary:Aim: This study validated the RapidArc (RA) delivery using a volumetric ArcCHECK phantom as per the guidelines proposed in Task Group Report 119 from the American Association of Physicists in Medicine Task group 119 (AAPM TG 119). This study also investigated the impact of the Acuros XB (AXB) algorithm in comparison to analytical anisotropic algorithm (AAA) on the RA dose calculations in the homogeneous medium of the ArcCHECK phantom. Materials and Methods: A volumetric ArcCHECK phantom along with AAPM TG 119 tests was used to evaluate the RA plans and verify the dose delivery for photon beam of 6 MV energy. Results: The RA planning results were comparable and satisfied the planning criteria stated in the TG 119 report for all test cases. The average percentage gamma passing rates for the AAA-calculated plans were 98.5 (standard deviation [SD]: 0.6), 98.5 (SD: 1.3), and 98.1 (SD: 2.0) and for the AXB-calculated plans were 95.1 (SD: 1.8), 96.1 (SD: 1.3), and 94.0 (SD: 0.9) for the Clinac-iX (6 MV) and TrueBeam (TB)-STx (6 MV_filtered beam [FB] and 6 MV_flattening filter-free beam [FFFB]), respectively. For ion chamber measurements, the average percentage dose differences for the AAA-calculated plans were 1.5 (SD: 2.5), 2.7 (SD: 1.4), and 1.4(SD: 2.7) and for AXB-calculated plans were 2.3 (SD: 1.6), 3.2 (SD: 1.5), and 2.3 (SD: 2.0) for Clinac-iX (6 MV) and TB-STx (6 MV_FB and 6 MV_FFFB), respectively. Conclusion: Thus, the ArcCHECK can successfully be utilized for the validation of the RA delivery. The AXB has potential to perform dose calculations comparable to those of the AAA for RA plans in the homogeneous medium of the ArcCHECK phantom.
ISSN:0971-6203
1998-3913