Using colony size to measure fitness in Saccharomyces cerevisiae.

Competitive fitness assays in liquid culture have been a mainstay for characterizing experimental evolution of microbial populations. Growth of microbial strains has also been extensively characterized by colony size and could serve as a useful alternative if translated to per generation measurement...

Full description

Bibliographic Details
Main Authors: James H Miller, Vincent J Fasanello, Ping Liu, Emery R Longan, Carlos A Botero, Justin C Fay
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2022-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0271709
Description
Summary:Competitive fitness assays in liquid culture have been a mainstay for characterizing experimental evolution of microbial populations. Growth of microbial strains has also been extensively characterized by colony size and could serve as a useful alternative if translated to per generation measurements of relative fitness. To examine fitness based on colony size, we established a relationship between cell number and colony size for strains of Saccharomyces cerevisiae robotically pinned onto solid agar plates in a high-density format. This was used to measure growth rates and estimate relative fitness differences between evolved strains and their ancestors. After controlling for edge effects through both normalization and agar-trimming, we found that colony size is a sensitive measure of fitness, capable of detecting 1% differences. While fitnesses determined from liquid and solid mediums were not equivalent, our results demonstrate that colony size provides a sensitive means of measuring fitness that is particularly well suited to measurements across many environments.
ISSN:1932-6203