Summary: | In chemical graph theory, a topological index is a numerical representation of a chemical network, while a topological descriptor correlates certain physicochemical characteristics of underlying chemical compounds besides its chemical representation. The graph plays a vital role in modeling and designing any chemical network. Simonraj et al. derived a new type of graphs, which is named a third type of hex-derived networks. In our work, we discuss the third type of hex-derived networks <inline-formula> <math display="inline"> <semantics> <mrow> <mi>H</mi> <mi>D</mi> <mi>N</mi> <mn>3</mn> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mi>H</mi> <mi>D</mi> <mi>N</mi> <mn>3</mn> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>H</mi> <mi>D</mi> <mi>N</mi> <mn>3</mn> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>C</mi> <mi>H</mi> <mi>D</mi> <mi>N</mi> <mn>3</mn> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, and compute exact results for topological indices which are based on degrees of end vertices.
|