Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae

Ongoing symptoms might follow acute COVID-19. Using electronic health information, we compared pre‒ and post‒COVID-19 diagnostic codes to identify symptoms that had higher encounter incidence in the post‒COVID-19 period as sequelae. This method can be used for hypothesis generation and ongoing moni...

Full description

Bibliographic Details
Main Authors: Eleanor S. Click, Donald Malec, Jennifer R. Chevinsky, Guoyu Tao, Michael Melgar, Jennifer E. Giovanni, Adi V. Gundlapalli, S. Deblina Datta, Karen K. Wong
Format: Article
Language:English
Published: Centers for Disease Control and Prevention 2023-02-01
Series:Emerging Infectious Diseases
Subjects:
Online Access:https://wwwnc.cdc.gov/eid/article/29/2/22-0712_article
_version_ 1797945148940746752
author Eleanor S. Click
Donald Malec
Jennifer R. Chevinsky
Guoyu Tao
Michael Melgar
Jennifer E. Giovanni
Adi V. Gundlapalli
S. Deblina Datta
Karen K. Wong
author_facet Eleanor S. Click
Donald Malec
Jennifer R. Chevinsky
Guoyu Tao
Michael Melgar
Jennifer E. Giovanni
Adi V. Gundlapalli
S. Deblina Datta
Karen K. Wong
author_sort Eleanor S. Click
collection DOAJ
description Ongoing symptoms might follow acute COVID-19. Using electronic health information, we compared pre‒ and post‒COVID-19 diagnostic codes to identify symptoms that had higher encounter incidence in the post‒COVID-19 period as sequelae. This method can be used for hypothesis generation and ongoing monitoring of sequelae of COVID-19 and future emerging diseases.
first_indexed 2024-04-10T20:49:38Z
format Article
id doaj.art-e623877fb0424c2f9be6414ce2ab1e44
institution Directory Open Access Journal
issn 1080-6040
1080-6059
language English
last_indexed 2024-04-10T20:49:38Z
publishDate 2023-02-01
publisher Centers for Disease Control and Prevention
record_format Article
series Emerging Infectious Diseases
spelling doaj.art-e623877fb0424c2f9be6414ce2ab1e442023-01-23T18:21:58ZengCenters for Disease Control and PreventionEmerging Infectious Diseases1080-60401080-60592023-02-0129238939210.3201/eid2902.220712Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 SequelaeEleanor S. ClickDonald MalecJennifer R. ChevinskyGuoyu TaoMichael MelgarJennifer E. GiovanniAdi V. GundlapalliS. Deblina DattaKaren K. Wong Ongoing symptoms might follow acute COVID-19. Using electronic health information, we compared pre‒ and post‒COVID-19 diagnostic codes to identify symptoms that had higher encounter incidence in the post‒COVID-19 period as sequelae. This method can be used for hypothesis generation and ongoing monitoring of sequelae of COVID-19 and future emerging diseases. https://wwwnc.cdc.gov/eid/article/29/2/22-0712_articleCOVID-19coronavirus diseasesevere acute respiratory syndrome coronavirus 2SARS-CoV-2coronavirusesviruses
spellingShingle Eleanor S. Click
Donald Malec
Jennifer R. Chevinsky
Guoyu Tao
Michael Melgar
Jennifer E. Giovanni
Adi V. Gundlapalli
S. Deblina Datta
Karen K. Wong
Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae
Emerging Infectious Diseases
COVID-19
coronavirus disease
severe acute respiratory syndrome coronavirus 2
SARS-CoV-2
coronaviruses
viruses
title Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae
title_full Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae
title_fullStr Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae
title_full_unstemmed Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae
title_short Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae
title_sort longitudinal analysis of electronic health information to identify possible covid 19 sequelae
topic COVID-19
coronavirus disease
severe acute respiratory syndrome coronavirus 2
SARS-CoV-2
coronaviruses
viruses
url https://wwwnc.cdc.gov/eid/article/29/2/22-0712_article
work_keys_str_mv AT eleanorsclick longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae
AT donaldmalec longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae
AT jenniferrchevinsky longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae
AT guoyutao longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae
AT michaelmelgar longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae
AT jenniferegiovanni longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae
AT adivgundlapalli longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae
AT sdeblinadatta longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae
AT karenkwong longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae