Infinitely many solutions for cubic nonlinear Schrödinger equations in dimension four

We extend Chen, Wei and Yan’s constructions of families of solutions with unbounded energies [5] to the case of cubic nonlinear Schrödinger equations in the optimal dimension four.

Bibliographic Details
Main Authors: Vétois Jérôme, Wang Shaodong
Format: Article
Language:English
Published: De Gruyter 2017-08-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2017-0085
_version_ 1818907882778787840
author Vétois Jérôme
Wang Shaodong
author_facet Vétois Jérôme
Wang Shaodong
author_sort Vétois Jérôme
collection DOAJ
description We extend Chen, Wei and Yan’s constructions of families of solutions with unbounded energies [5] to the case of cubic nonlinear Schrödinger equations in the optimal dimension four.
first_indexed 2024-12-19T22:02:11Z
format Article
id doaj.art-e625b38df0554d5383a0aac83865be48
institution Directory Open Access Journal
issn 2191-9496
2191-950X
language English
last_indexed 2024-12-19T22:02:11Z
publishDate 2017-08-01
publisher De Gruyter
record_format Article
series Advances in Nonlinear Analysis
spelling doaj.art-e625b38df0554d5383a0aac83865be482022-12-21T20:04:08ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2017-08-018171572410.1515/anona-2017-0085anona-2017-0085Infinitely many solutions for cubic nonlinear Schrödinger equations in dimension fourVétois Jérôme0Wang Shaodong1Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, Quebec H3A 0B9, CanadaDepartment of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, Quebec H3A 0B9, CanadaWe extend Chen, Wei and Yan’s constructions of families of solutions with unbounded energies [5] to the case of cubic nonlinear Schrödinger equations in the optimal dimension four.https://doi.org/10.1515/anona-2017-0085nonlinear schrödinger equationsblowing-up solutionsunbounded energies35j61
spellingShingle Vétois Jérôme
Wang Shaodong
Infinitely many solutions for cubic nonlinear Schrödinger equations in dimension four
Advances in Nonlinear Analysis
nonlinear schrödinger equations
blowing-up solutions
unbounded energies
35j61
title Infinitely many solutions for cubic nonlinear Schrödinger equations in dimension four
title_full Infinitely many solutions for cubic nonlinear Schrödinger equations in dimension four
title_fullStr Infinitely many solutions for cubic nonlinear Schrödinger equations in dimension four
title_full_unstemmed Infinitely many solutions for cubic nonlinear Schrödinger equations in dimension four
title_short Infinitely many solutions for cubic nonlinear Schrödinger equations in dimension four
title_sort infinitely many solutions for cubic nonlinear schrodinger equations in dimension four
topic nonlinear schrödinger equations
blowing-up solutions
unbounded energies
35j61
url https://doi.org/10.1515/anona-2017-0085
work_keys_str_mv AT vetoisjerome infinitelymanysolutionsforcubicnonlinearschrodingerequationsindimensionfour
AT wangshaodong infinitelymanysolutionsforcubicnonlinearschrodingerequationsindimensionfour