Fractals as Julia Sets of Complex Sine Function via Fixed Point Iterations

We explore some new variants of the Julia set by developing the escape criteria for a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">sin</mo><mo>(<...

Full description

Bibliographic Details
Main Authors: Swati Antal, Anita Tomar, Darshana J. Prajapati, Mohammad Sajid
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/5/4/272
Description
Summary:We explore some new variants of the Julia set by developing the escape criteria for a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">sin</mo><mo>(</mo><msup><mi>z</mi><mi>n</mi></msup><mo>)</mo><mo>+</mo><mi>a</mi><mi>z</mi><mo>+</mo><mi>c</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>,</mo><mi>c</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, and <i>z</i> is a complex variable, utilizing four distinct fixed point iterative methods. Furthermore, we examine the impact of parameters on the deviation of dynamics, color, and appearance of fractals. Some of these fractals represent the stunning art on glass, and Rangoli (made in different parts of India, especially during the festive season) which are useful in interior decoration. Some fractals are similar to beautiful objects found in our surroundings like flowers (to be specific Hibiscus and Catharanthus Roseus), and ants.
ISSN:2504-3110