Fractals as Julia Sets of Complex Sine Function via Fixed Point Iterations

We explore some new variants of the Julia set by developing the escape criteria for a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">sin</mo><mo>(<...

Full description

Bibliographic Details
Main Authors: Swati Antal, Anita Tomar, Darshana J. Prajapati, Mohammad Sajid
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/5/4/272
_version_ 1827672391584579584
author Swati Antal
Anita Tomar
Darshana J. Prajapati
Mohammad Sajid
author_facet Swati Antal
Anita Tomar
Darshana J. Prajapati
Mohammad Sajid
author_sort Swati Antal
collection DOAJ
description We explore some new variants of the Julia set by developing the escape criteria for a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">sin</mo><mo>(</mo><msup><mi>z</mi><mi>n</mi></msup><mo>)</mo><mo>+</mo><mi>a</mi><mi>z</mi><mo>+</mo><mi>c</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>,</mo><mi>c</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, and <i>z</i> is a complex variable, utilizing four distinct fixed point iterative methods. Furthermore, we examine the impact of parameters on the deviation of dynamics, color, and appearance of fractals. Some of these fractals represent the stunning art on glass, and Rangoli (made in different parts of India, especially during the festive season) which are useful in interior decoration. Some fractals are similar to beautiful objects found in our surroundings like flowers (to be specific Hibiscus and Catharanthus Roseus), and ants.
first_indexed 2024-03-10T04:05:46Z
format Article
id doaj.art-e62f1a5692834f5796e903f444630e8d
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-10T04:05:46Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-e62f1a5692834f5796e903f444630e8d2023-11-23T08:24:40ZengMDPI AGFractal and Fractional2504-31102021-12-015427210.3390/fractalfract5040272Fractals as Julia Sets of Complex Sine Function via Fixed Point IterationsSwati Antal0Anita Tomar1Darshana J. Prajapati2Mohammad Sajid3BGR Campus, Hemavati Nandan Bahuguna Garhwal University, Pauri Garhwal 246001, IndiaPt. L.M.S. Campus, Sri Dev Suman Uttrakhand University, Rishikesh 249201, IndiaM.B. Patel Institute of Technology, New Vallabh Vidyanagar 388121, IndiaDepartment of Mechanical Engineering, College of Engineering, Qassim University, Buraydah 51452, Saudi ArabiaWe explore some new variants of the Julia set by developing the escape criteria for a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">sin</mo><mo>(</mo><msup><mi>z</mi><mi>n</mi></msup><mo>)</mo><mo>+</mo><mi>a</mi><mi>z</mi><mo>+</mo><mi>c</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>,</mo><mi>c</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, and <i>z</i> is a complex variable, utilizing four distinct fixed point iterative methods. Furthermore, we examine the impact of parameters on the deviation of dynamics, color, and appearance of fractals. Some of these fractals represent the stunning art on glass, and Rangoli (made in different parts of India, especially during the festive season) which are useful in interior decoration. Some fractals are similar to beautiful objects found in our surroundings like flowers (to be specific Hibiscus and Catharanthus Roseus), and ants.https://www.mdpi.com/2504-3110/5/4/272escape criterionfixed pointMann orbitIshikawa orbitNoor orbit
spellingShingle Swati Antal
Anita Tomar
Darshana J. Prajapati
Mohammad Sajid
Fractals as Julia Sets of Complex Sine Function via Fixed Point Iterations
Fractal and Fractional
escape criterion
fixed point
Mann orbit
Ishikawa orbit
Noor orbit
title Fractals as Julia Sets of Complex Sine Function via Fixed Point Iterations
title_full Fractals as Julia Sets of Complex Sine Function via Fixed Point Iterations
title_fullStr Fractals as Julia Sets of Complex Sine Function via Fixed Point Iterations
title_full_unstemmed Fractals as Julia Sets of Complex Sine Function via Fixed Point Iterations
title_short Fractals as Julia Sets of Complex Sine Function via Fixed Point Iterations
title_sort fractals as julia sets of complex sine function via fixed point iterations
topic escape criterion
fixed point
Mann orbit
Ishikawa orbit
Noor orbit
url https://www.mdpi.com/2504-3110/5/4/272
work_keys_str_mv AT swatiantal fractalsasjuliasetsofcomplexsinefunctionviafixedpointiterations
AT anitatomar fractalsasjuliasetsofcomplexsinefunctionviafixedpointiterations
AT darshanajprajapati fractalsasjuliasetsofcomplexsinefunctionviafixedpointiterations
AT mohammadsajid fractalsasjuliasetsofcomplexsinefunctionviafixedpointiterations