Efektivitas Metode Hibrida ARIMA-MLP untuk Peramalan Nilai Tukar Petani

The agricultural sector remains a crucial pillar of Indonesia’s economy, making the most significant contribution. Still, the situation of farmers, primarily the elderly, indicates physical limitations and low income leading to high poverty levels, coupled with fluctuations in the Farmer Exchange Ra...

Full description

Bibliographic Details
Main Authors: Saffanah Nur Elvina Mulyawati, Mujiati Dwi Kartikasari
Format: Article
Language:English
Published: Department of Mathematics, Universitas Negeri Gorontalo 2024-02-01
Series:Jambura Journal of Mathematics
Subjects:
Online Access:https://ejurnal.ung.ac.id/index.php/jjom/article/view/23944
_version_ 1797292000775503872
author Saffanah Nur Elvina Mulyawati
Mujiati Dwi Kartikasari
author_facet Saffanah Nur Elvina Mulyawati
Mujiati Dwi Kartikasari
author_sort Saffanah Nur Elvina Mulyawati
collection DOAJ
description The agricultural sector remains a crucial pillar of Indonesia’s economy, making the most significant contribution. Still, the situation of farmers, primarily the elderly, indicates physical limitations and low income leading to high poverty levels, coupled with fluctuations in the Farmer Exchange Rate (FER) annually tending to decline in D.I. Yogyakarta, indicating losses due to increased production costs. This research aims to assess the effectiveness of the Hybrid Autoregressive Integrated Moving Average (ARIMA) – Multilayer Perceptron (MLP) method in forecasting NTP in D.I. Yogyakarta. This is based on the analysis of comparing the accuracy values of forecasts using Mean Absolute Percentage Error (MAPE) evaluation or through visualizing the forecast graphs generated between the ARIMA and Hybrid ARIMA-MLP methods. The combination (hybrid) of ARIMA and MLP methods addresses the complexity of time series, where ARIMA anticipates NTP changes by handling linear patterns. At the same time, MLP improves forecast accuracy by managing more complex patterns (both linear and nonlinear). Thus, it can provide more accurate information about the welfare development of farmers. The results show that the Hybrid ARIMA-MLP method is significantly better than the individual ARIMA method, with the obtained model being Hybrid ARIMA-MLP (12-5-10-2) and an accuracy of 99.993%.
first_indexed 2024-03-07T19:45:54Z
format Article
id doaj.art-e632f6e858174bda8c5cd5015dc1ddea
institution Directory Open Access Journal
issn 2654-5616
2656-1344
language English
last_indexed 2024-03-07T19:45:54Z
publishDate 2024-02-01
publisher Department of Mathematics, Universitas Negeri Gorontalo
record_format Article
series Jambura Journal of Mathematics
spelling doaj.art-e632f6e858174bda8c5cd5015dc1ddea2024-02-29T02:09:22ZengDepartment of Mathematics, Universitas Negeri GorontaloJambura Journal of Mathematics2654-56162656-13442024-02-01619210110.37905/jjom.v6i1.239447473Efektivitas Metode Hibrida ARIMA-MLP untuk Peramalan Nilai Tukar PetaniSaffanah Nur Elvina Mulyawati0Mujiati Dwi Kartikasari1Universitas Islam IndonesiaUniversitas Islam IndonesiaThe agricultural sector remains a crucial pillar of Indonesia’s economy, making the most significant contribution. Still, the situation of farmers, primarily the elderly, indicates physical limitations and low income leading to high poverty levels, coupled with fluctuations in the Farmer Exchange Rate (FER) annually tending to decline in D.I. Yogyakarta, indicating losses due to increased production costs. This research aims to assess the effectiveness of the Hybrid Autoregressive Integrated Moving Average (ARIMA) – Multilayer Perceptron (MLP) method in forecasting NTP in D.I. Yogyakarta. This is based on the analysis of comparing the accuracy values of forecasts using Mean Absolute Percentage Error (MAPE) evaluation or through visualizing the forecast graphs generated between the ARIMA and Hybrid ARIMA-MLP methods. The combination (hybrid) of ARIMA and MLP methods addresses the complexity of time series, where ARIMA anticipates NTP changes by handling linear patterns. At the same time, MLP improves forecast accuracy by managing more complex patterns (both linear and nonlinear). Thus, it can provide more accurate information about the welfare development of farmers. The results show that the Hybrid ARIMA-MLP method is significantly better than the individual ARIMA method, with the obtained model being Hybrid ARIMA-MLP (12-5-10-2) and an accuracy of 99.993%.https://ejurnal.ung.ac.id/index.php/jjom/article/view/23944forecastinghybrid arima-mlparimafarmer exchange rate
spellingShingle Saffanah Nur Elvina Mulyawati
Mujiati Dwi Kartikasari
Efektivitas Metode Hibrida ARIMA-MLP untuk Peramalan Nilai Tukar Petani
Jambura Journal of Mathematics
forecasting
hybrid arima-mlp
arima
farmer exchange rate
title Efektivitas Metode Hibrida ARIMA-MLP untuk Peramalan Nilai Tukar Petani
title_full Efektivitas Metode Hibrida ARIMA-MLP untuk Peramalan Nilai Tukar Petani
title_fullStr Efektivitas Metode Hibrida ARIMA-MLP untuk Peramalan Nilai Tukar Petani
title_full_unstemmed Efektivitas Metode Hibrida ARIMA-MLP untuk Peramalan Nilai Tukar Petani
title_short Efektivitas Metode Hibrida ARIMA-MLP untuk Peramalan Nilai Tukar Petani
title_sort efektivitas metode hibrida arima mlp untuk peramalan nilai tukar petani
topic forecasting
hybrid arima-mlp
arima
farmer exchange rate
url https://ejurnal.ung.ac.id/index.php/jjom/article/view/23944
work_keys_str_mv AT saffanahnurelvinamulyawati efektivitasmetodehibridaarimamlpuntukperamalannilaitukarpetani
AT mujiatidwikartikasari efektivitasmetodehibridaarimamlpuntukperamalannilaitukarpetani