Flexible Sensors Array Based on Frosted Microstructured Ecoflex Film and TPU Nanofibers for Epidermal Pulse Wave Monitoring
Recent advances in flexible pressure sensors have fueled increasing attention as promising technologies with which to realize human epidermal pulse wave monitoring for the early diagnosis and prevention of cardiovascular diseases. However, strict requirements of a single sensor on the arterial posit...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-04-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/23/7/3717 |
_version_ | 1827746435883335680 |
---|---|
author | Xue Wang Zhiping Feng Gaoqiang Zhang Luna Wang Liang Chen Jin Yang Zhonglin Wang |
author_facet | Xue Wang Zhiping Feng Gaoqiang Zhang Luna Wang Liang Chen Jin Yang Zhonglin Wang |
author_sort | Xue Wang |
collection | DOAJ |
description | Recent advances in flexible pressure sensors have fueled increasing attention as promising technologies with which to realize human epidermal pulse wave monitoring for the early diagnosis and prevention of cardiovascular diseases. However, strict requirements of a single sensor on the arterial position make it difficult to meet the practical application scenarios. Herein, based on three single-electrode sensors with small area, a 3 × 1 flexible pressure sensor array was developed to enable measurement of epidermal pulse waves at different local positions of radial artery. The designed single sensor holds an area of 6 × 6 mm<sup>2</sup>, which mainly consists of frosted microstructured Ecoflex film and thermoplastic polyurethane (TPU) nanofibers. The Ecoflex film was formed by spinning Ecoflex solution onto a sandpaper surface. Micropatterned TPU nanofibers were prepared on a fluorinated ethylene propylene (FEP) film surface using the electrospinning method. The combination of frosted microstructure and nanofibers provides an increase in the contact separation of the tribopair, which is of great benefit for improving sensor performance. Due to this structure design, the single small-area sensor was characterized by pressure sensitivity of 0.14 V/kPa, a response time of 22 ms, a wide frequency band ranging from 1 to 23 Hz, and stability up to 7000 cycles. Given this output performance, the fabricated sensor can detect subtle physiological signals (e.g., respiration, ballistocardiogram, and heartbeat) and body movement. More importantly, the sensor can be utilized in capturing human epidermal pulse waves with rich details, and the consistency of each cycle in the same measurement is as high as 0.9987. The 3 × 1 flexible sensor array is employed to acquire pulse waves at different local positions of the radial artery. In addition, the time domain parameters including pulse wave transmission time (PTT) and pulse wave velocity (PWV) can be obtained successfully, which holds promising potential in pulse-based cardiovascular system status monitoring. |
first_indexed | 2024-03-11T05:25:18Z |
format | Article |
id | doaj.art-e633d1bd01e44acea99e744d5b93b4af |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-11T05:25:18Z |
publishDate | 2023-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-e633d1bd01e44acea99e744d5b93b4af2023-11-17T17:36:43ZengMDPI AGSensors1424-82202023-04-01237371710.3390/s23073717Flexible Sensors Array Based on Frosted Microstructured Ecoflex Film and TPU Nanofibers for Epidermal Pulse Wave MonitoringXue Wang0Zhiping Feng1Gaoqiang Zhang2Luna Wang3Liang Chen4Jin Yang5Zhonglin Wang6State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, ChinaState Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, ChinaState Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, ChinaState Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, ChinaState Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, ChinaState Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, ChinaBeijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, ChinaRecent advances in flexible pressure sensors have fueled increasing attention as promising technologies with which to realize human epidermal pulse wave monitoring for the early diagnosis and prevention of cardiovascular diseases. However, strict requirements of a single sensor on the arterial position make it difficult to meet the practical application scenarios. Herein, based on three single-electrode sensors with small area, a 3 × 1 flexible pressure sensor array was developed to enable measurement of epidermal pulse waves at different local positions of radial artery. The designed single sensor holds an area of 6 × 6 mm<sup>2</sup>, which mainly consists of frosted microstructured Ecoflex film and thermoplastic polyurethane (TPU) nanofibers. The Ecoflex film was formed by spinning Ecoflex solution onto a sandpaper surface. Micropatterned TPU nanofibers were prepared on a fluorinated ethylene propylene (FEP) film surface using the electrospinning method. The combination of frosted microstructure and nanofibers provides an increase in the contact separation of the tribopair, which is of great benefit for improving sensor performance. Due to this structure design, the single small-area sensor was characterized by pressure sensitivity of 0.14 V/kPa, a response time of 22 ms, a wide frequency band ranging from 1 to 23 Hz, and stability up to 7000 cycles. Given this output performance, the fabricated sensor can detect subtle physiological signals (e.g., respiration, ballistocardiogram, and heartbeat) and body movement. More importantly, the sensor can be utilized in capturing human epidermal pulse waves with rich details, and the consistency of each cycle in the same measurement is as high as 0.9987. The 3 × 1 flexible sensor array is employed to acquire pulse waves at different local positions of the radial artery. In addition, the time domain parameters including pulse wave transmission time (PTT) and pulse wave velocity (PWV) can be obtained successfully, which holds promising potential in pulse-based cardiovascular system status monitoring.https://www.mdpi.com/1424-8220/23/7/3717health monitoringpulse wave monitoringpulse wave velocitypressure sensors array |
spellingShingle | Xue Wang Zhiping Feng Gaoqiang Zhang Luna Wang Liang Chen Jin Yang Zhonglin Wang Flexible Sensors Array Based on Frosted Microstructured Ecoflex Film and TPU Nanofibers for Epidermal Pulse Wave Monitoring Sensors health monitoring pulse wave monitoring pulse wave velocity pressure sensors array |
title | Flexible Sensors Array Based on Frosted Microstructured Ecoflex Film and TPU Nanofibers for Epidermal Pulse Wave Monitoring |
title_full | Flexible Sensors Array Based on Frosted Microstructured Ecoflex Film and TPU Nanofibers for Epidermal Pulse Wave Monitoring |
title_fullStr | Flexible Sensors Array Based on Frosted Microstructured Ecoflex Film and TPU Nanofibers for Epidermal Pulse Wave Monitoring |
title_full_unstemmed | Flexible Sensors Array Based on Frosted Microstructured Ecoflex Film and TPU Nanofibers for Epidermal Pulse Wave Monitoring |
title_short | Flexible Sensors Array Based on Frosted Microstructured Ecoflex Film and TPU Nanofibers for Epidermal Pulse Wave Monitoring |
title_sort | flexible sensors array based on frosted microstructured ecoflex film and tpu nanofibers for epidermal pulse wave monitoring |
topic | health monitoring pulse wave monitoring pulse wave velocity pressure sensors array |
url | https://www.mdpi.com/1424-8220/23/7/3717 |
work_keys_str_mv | AT xuewang flexiblesensorsarraybasedonfrostedmicrostructuredecoflexfilmandtpunanofibersforepidermalpulsewavemonitoring AT zhipingfeng flexiblesensorsarraybasedonfrostedmicrostructuredecoflexfilmandtpunanofibersforepidermalpulsewavemonitoring AT gaoqiangzhang flexiblesensorsarraybasedonfrostedmicrostructuredecoflexfilmandtpunanofibersforepidermalpulsewavemonitoring AT lunawang flexiblesensorsarraybasedonfrostedmicrostructuredecoflexfilmandtpunanofibersforepidermalpulsewavemonitoring AT liangchen flexiblesensorsarraybasedonfrostedmicrostructuredecoflexfilmandtpunanofibersforepidermalpulsewavemonitoring AT jinyang flexiblesensorsarraybasedonfrostedmicrostructuredecoflexfilmandtpunanofibersforepidermalpulsewavemonitoring AT zhonglinwang flexiblesensorsarraybasedonfrostedmicrostructuredecoflexfilmandtpunanofibersforepidermalpulsewavemonitoring |