Intrinsic Decoherence and Recurrences in a Large Ferromagnetic <i>F</i> = 1 Spinor Bose–Einstein Condensate
Decoherence with recurrences appear in the dynamics of the one-body density matrix of an <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-12-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/1/67 |
_version_ | 1797542777243828224 |
---|---|
author | Juan Carlos Sandoval-Santana Roberto Zamora-Zamora Rosario Paredes Victor Romero-Rochín |
author_facet | Juan Carlos Sandoval-Santana Roberto Zamora-Zamora Rosario Paredes Victor Romero-Rochín |
author_sort | Juan Carlos Sandoval-Santana |
collection | DOAJ |
description | Decoherence with recurrences appear in the dynamics of the one-body density matrix of an <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> spinor Bose–Einstein condensate, initially prepared in coherent states, in the presence of an external uniform magnetic field and within the single mode approximation. The phenomenon emerges as a many-body effect of the interplay of the quadratic Zeeman effect, which breaks the rotational symmetry, and the spin-spin interactions. By performing full quantum diagonalizations, a very accurate time evolution of large condensates is analyzed, leading to heuristic analytic expressions for the time dependence of the one-body density matrix, in the weak and strong interacting regimes, for initial coherent states. We are able to find accurate analytical expressions for both the decoherence and the recurrence times, in terms of the number of atoms and strength parameters, which show remarkable differences depending on the strength of the spin-spin interactions. The features of the stationary states in both regimes are also investigated. We discuss the nature of these limits in light of the thermodynamic limit. |
first_indexed | 2024-03-10T13:35:19Z |
format | Article |
id | doaj.art-e637075cce2e480c87984ae272f58336 |
institution | Directory Open Access Journal |
issn | 2073-8994 |
language | English |
last_indexed | 2024-03-10T13:35:19Z |
publishDate | 2020-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Symmetry |
spelling | doaj.art-e637075cce2e480c87984ae272f583362023-11-21T07:35:12ZengMDPI AGSymmetry2073-89942020-12-011316710.3390/sym13010067Intrinsic Decoherence and Recurrences in a Large Ferromagnetic <i>F</i> = 1 Spinor Bose–Einstein CondensateJuan Carlos Sandoval-Santana0Roberto Zamora-Zamora1Rosario Paredes2Victor Romero-Rochín3Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, MexicoDepartment of Applied Physics, QCD Labs, COMP Centre of Excellence, Aalto University, P.O. Box 13500, FI-00076 Aalto, FinlandInstituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, MexicoInstituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, MexicoDecoherence with recurrences appear in the dynamics of the one-body density matrix of an <inline-formula><math display="inline"><semantics><mrow><mi>F</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> spinor Bose–Einstein condensate, initially prepared in coherent states, in the presence of an external uniform magnetic field and within the single mode approximation. The phenomenon emerges as a many-body effect of the interplay of the quadratic Zeeman effect, which breaks the rotational symmetry, and the spin-spin interactions. By performing full quantum diagonalizations, a very accurate time evolution of large condensates is analyzed, leading to heuristic analytic expressions for the time dependence of the one-body density matrix, in the weak and strong interacting regimes, for initial coherent states. We are able to find accurate analytical expressions for both the decoherence and the recurrence times, in terms of the number of atoms and strength parameters, which show remarkable differences depending on the strength of the spin-spin interactions. The features of the stationary states in both regimes are also investigated. We discuss the nature of these limits in light of the thermodynamic limit.https://www.mdpi.com/2073-8994/13/1/67Bose–Einstein condensatesquantum decoherencefull quantum dynamics |
spellingShingle | Juan Carlos Sandoval-Santana Roberto Zamora-Zamora Rosario Paredes Victor Romero-Rochín Intrinsic Decoherence and Recurrences in a Large Ferromagnetic <i>F</i> = 1 Spinor Bose–Einstein Condensate Symmetry Bose–Einstein condensates quantum decoherence full quantum dynamics |
title | Intrinsic Decoherence and Recurrences in a Large Ferromagnetic <i>F</i> = 1 Spinor Bose–Einstein Condensate |
title_full | Intrinsic Decoherence and Recurrences in a Large Ferromagnetic <i>F</i> = 1 Spinor Bose–Einstein Condensate |
title_fullStr | Intrinsic Decoherence and Recurrences in a Large Ferromagnetic <i>F</i> = 1 Spinor Bose–Einstein Condensate |
title_full_unstemmed | Intrinsic Decoherence and Recurrences in a Large Ferromagnetic <i>F</i> = 1 Spinor Bose–Einstein Condensate |
title_short | Intrinsic Decoherence and Recurrences in a Large Ferromagnetic <i>F</i> = 1 Spinor Bose–Einstein Condensate |
title_sort | intrinsic decoherence and recurrences in a large ferromagnetic i f i 1 spinor bose einstein condensate |
topic | Bose–Einstein condensates quantum decoherence full quantum dynamics |
url | https://www.mdpi.com/2073-8994/13/1/67 |
work_keys_str_mv | AT juancarlossandovalsantana intrinsicdecoherenceandrecurrencesinalargeferromagneticifi1spinorboseeinsteincondensate AT robertozamorazamora intrinsicdecoherenceandrecurrencesinalargeferromagneticifi1spinorboseeinsteincondensate AT rosarioparedes intrinsicdecoherenceandrecurrencesinalargeferromagneticifi1spinorboseeinsteincondensate AT victorromerorochin intrinsicdecoherenceandrecurrencesinalargeferromagneticifi1spinorboseeinsteincondensate |