Research of U-Net-Based CNN Architectures for Metal Surface Defect Detection

The quality, wear and safety of metal structures can be controlled effectively, provided that surface defects, which occur on metal structures, are detected at the right time. Over the past 10 years, researchers have proposed a number of neural network architectures that have shown high efficiency i...

Full description

Bibliographic Details
Main Authors: Ihor Konovalenko, Pavlo Maruschak, Janette Brezinová, Olegas Prentkovskis, Jakub Brezina
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/10/5/327
_version_ 1797498431275532288
author Ihor Konovalenko
Pavlo Maruschak
Janette Brezinová
Olegas Prentkovskis
Jakub Brezina
author_facet Ihor Konovalenko
Pavlo Maruschak
Janette Brezinová
Olegas Prentkovskis
Jakub Brezina
author_sort Ihor Konovalenko
collection DOAJ
description The quality, wear and safety of metal structures can be controlled effectively, provided that surface defects, which occur on metal structures, are detected at the right time. Over the past 10 years, researchers have proposed a number of neural network architectures that have shown high efficiency in various areas, including image classification, segmentation and recognition. However, choosing the best architecture for this particular task is often problematic. In order to compare various techniques for detecting defects such as “scratch abrasion”, we created and investigated U-Net-like architectures with encoders such as ResNet, SEResNet, SEResNeXt, DenseNet, InceptionV3, Inception-ResNetV2, MobileNet and EfficientNet. The relationship between training validation metrics and final segmentation test metrics was investigated. The correlation between the loss function, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>S</mi><mi>C</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>o</mi><mi>U</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mn>1</mn></mrow></semantics></math></inline-formula> validation metrics and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>S</mi><mi>C</mi></mrow></semantics></math></inline-formula> test metrics was calculated. Recognition accuracy was analyzed as affected by the optimizer during neural network training. In the context of this problem, neural networks trained using the stochastic gradient descent optimizer with Nesterov momentum were found to have the best generalizing properties. To select the best model during its training on the basis of the validation metrics, the main test metrics of recognition quality (Dice similarity coefficient) were analyzed depending on the validation metrics. The ResNet and DenseNet models were found to achieve the best generalizing properties for our task. The highest recognition accuracy was attained using the U-Net model with a ResNet152 backbone. The results obtained on the test dataset were <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>S</mi><mi>C</mi><mo>=</mo><mn>0.9304</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>o</mi><mi>U</mi><mo>=</mo><mn>0.9122</mn></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T03:33:17Z
format Article
id doaj.art-e640bab6fe04455e90901ef8c09cda2a
institution Directory Open Access Journal
issn 2075-1702
language English
last_indexed 2024-03-10T03:33:17Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Machines
spelling doaj.art-e640bab6fe04455e90901ef8c09cda2a2023-11-23T11:52:21ZengMDPI AGMachines2075-17022022-04-0110532710.3390/machines10050327Research of U-Net-Based CNN Architectures for Metal Surface Defect DetectionIhor Konovalenko0Pavlo Maruschak1Janette Brezinová2Olegas Prentkovskis3Jakub Brezina4Department of Industrial Automation, Ternopil National Ivan Puluj Technical University, Rus’ka Str. 56, 46001 Ternopil, UkraineDepartment of Industrial Automation, Ternopil National Ivan Puluj Technical University, Rus’ka Str. 56, 46001 Ternopil, UkraineDepartment of Technology, Materials and Computer Supported Production, Faculty of Mechanical Engineering, Technical University of Košice, Mäsiarska 74, 04001 Košice, SlovakiaDepartment of Mobile Machinery and Railway Transport, Vilnius Gediminas Technical University, Plytinės g. 27, LT-10101 Vilnius, LithuaniaDepartment of Technology, Materials and Computer Supported Production, Faculty of Mechanical Engineering, Technical University of Košice, Mäsiarska 74, 04001 Košice, SlovakiaThe quality, wear and safety of metal structures can be controlled effectively, provided that surface defects, which occur on metal structures, are detected at the right time. Over the past 10 years, researchers have proposed a number of neural network architectures that have shown high efficiency in various areas, including image classification, segmentation and recognition. However, choosing the best architecture for this particular task is often problematic. In order to compare various techniques for detecting defects such as “scratch abrasion”, we created and investigated U-Net-like architectures with encoders such as ResNet, SEResNet, SEResNeXt, DenseNet, InceptionV3, Inception-ResNetV2, MobileNet and EfficientNet. The relationship between training validation metrics and final segmentation test metrics was investigated. The correlation between the loss function, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>S</mi><mi>C</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>o</mi><mi>U</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mn>1</mn></mrow></semantics></math></inline-formula> validation metrics and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>S</mi><mi>C</mi></mrow></semantics></math></inline-formula> test metrics was calculated. Recognition accuracy was analyzed as affected by the optimizer during neural network training. In the context of this problem, neural networks trained using the stochastic gradient descent optimizer with Nesterov momentum were found to have the best generalizing properties. To select the best model during its training on the basis of the validation metrics, the main test metrics of recognition quality (Dice similarity coefficient) were analyzed depending on the validation metrics. The ResNet and DenseNet models were found to achieve the best generalizing properties for our task. The highest recognition accuracy was attained using the U-Net model with a ResNet152 backbone. The results obtained on the test dataset were <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>S</mi><mi>C</mi><mo>=</mo><mn>0.9304</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>o</mi><mi>U</mi><mo>=</mo><mn>0.9122</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2075-1702/10/5/327surface defect detectionvisual inspection technologyimage segmentationCNN optimizerstrip surfacemetallurgy
spellingShingle Ihor Konovalenko
Pavlo Maruschak
Janette Brezinová
Olegas Prentkovskis
Jakub Brezina
Research of U-Net-Based CNN Architectures for Metal Surface Defect Detection
Machines
surface defect detection
visual inspection technology
image segmentation
CNN optimizer
strip surface
metallurgy
title Research of U-Net-Based CNN Architectures for Metal Surface Defect Detection
title_full Research of U-Net-Based CNN Architectures for Metal Surface Defect Detection
title_fullStr Research of U-Net-Based CNN Architectures for Metal Surface Defect Detection
title_full_unstemmed Research of U-Net-Based CNN Architectures for Metal Surface Defect Detection
title_short Research of U-Net-Based CNN Architectures for Metal Surface Defect Detection
title_sort research of u net based cnn architectures for metal surface defect detection
topic surface defect detection
visual inspection technology
image segmentation
CNN optimizer
strip surface
metallurgy
url https://www.mdpi.com/2075-1702/10/5/327
work_keys_str_mv AT ihorkonovalenko researchofunetbasedcnnarchitecturesformetalsurfacedefectdetection
AT pavlomaruschak researchofunetbasedcnnarchitecturesformetalsurfacedefectdetection
AT janettebrezinova researchofunetbasedcnnarchitecturesformetalsurfacedefectdetection
AT olegasprentkovskis researchofunetbasedcnnarchitecturesformetalsurfacedefectdetection
AT jakubbrezina researchofunetbasedcnnarchitecturesformetalsurfacedefectdetection