Summary: | The South China Sea (SCS) plays an important role in global marine ecology. Studies of phytoplankton diversity promote the sustainable utilization of resources in the SCS. From July to August 2020, the phytoplankton community structure at 47 stations in the northern SCS was investigated. Species composition and distribution of phytoplankton, water quality, diversity index, main influencing factors, and succession characteristics of the community structure were analyzed in combination with the survey results from previous years. A total of 332 separate taxa from 83 genera and three phyla were identified, including 142 species and 45 genera of Bacillariophyta, 188 species and 36 genera of Dinophyta, and two species and two genera of Chrysophyta. Average phytoplankton cell abundance was 649.97 cells/L. <i>Nitzschia</i> spp., <i>Thalassionema nitzschioides</i>, and <i>Scrippsiella</i> spp. were the dominant species. <i>Scrippsiella</i> spp. was found for the first time as a dominant species in the northern SCS. Meanwhile, <i>Nitzschia</i> spp. was associated with organic-polluted water. The high-value areas of <i>Nitzschia</i> spp. also indicated eutrophication, and water was slightly polluted. The Shannon–Weiner diversity index of the surface layer was 0.99–4.56 (with a mean of 3.57), and the evenness index was 0.23–0.96 (with a mean of 0.83). The phytoplankton community structure in the northern SCS was deemed to be stable. Pearson correlation analysis showed that the sum of nitrate and nitrite was significantly negatively correlated with the abundance of dinoflagellate, which indicated restrictions as a result of the sum of nitrate and nitrite, with no significant correlation between ammonium salt and various groups. Small- and medium-sized phytoplankton are usually dominant in the SCS, where nitrogen is limited.
|