AUTOMATED STRUCTURAL FOREST CHANGES USING LIDAR POINT CLOUDS AND GIS ANALYSES
<p>Forest spatial structure describes the relationships among different species in the same forest community. Automation in the monitoring of the structural forest changes and forest mapping is one of the main utilities of applications of modern geoinformatics methods. The obtaining objective...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-06-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2021/603/2021/isprs-archives-XLIII-B3-2021-603-2021.pdf |
_version_ | 1818848100435886080 |
---|---|
author | A. Novo H. González-Jorge J. Martínez-Sánchez J. M. Fernández-Alonso H. Lorenzo |
author_facet | A. Novo H. González-Jorge J. Martínez-Sánchez J. M. Fernández-Alonso H. Lorenzo |
author_sort | A. Novo |
collection | DOAJ |
description | <p>Forest spatial structure describes the relationships among different species in the same forest community. Automation in the monitoring of the structural forest changes and forest mapping is one of the main utilities of applications of modern geoinformatics methods. The obtaining objective information requires the use of spatial data derived from photogrammetry and remote sensing. This paper investigates the possibility of applying light detection and ranging (LiDAR) point clouds and geographic information system (GIS) analyses for automated mapping and detection changes in vegetation structure during a year of study. The research was conducted in an area of the Ourense Province (NWSpain). The airborne laser scanning (ALS) data, acquired in August 2019 and June of 2020, reveal detailed changes in forest structure. Based on ALS data the vegetation parameters will be analysed.</p><p>To study the structural behaviour of the tree vegetation, the following parameters are used in each one of the sampling areas: (1) Relationship between the tree species present and their stratification; (2) Vegetation classification in fuel types; (3) Biomass (Gi); (4) Number of individuals per area; and (5) Canopy cover fraction (CCF). Besides, the results were compared with the ground truth data recollected in the study area.</p><p>The development of a quantitative structural model based on Aerial Laser Scanning (ALS) point clouds was proposed to accurately estimate tree attributes automatically and to detect changes in forest structure. Results of statistical analysis of point cloud show the possibility to use UAV LiDAR data to characterize changes in the structure of vegetation.</p> |
first_indexed | 2024-12-19T06:11:58Z |
format | Article |
id | doaj.art-e64b794a156e498da7d2338c2d64f2cf |
institution | Directory Open Access Journal |
issn | 1682-1750 2194-9034 |
language | English |
last_indexed | 2024-12-19T06:11:58Z |
publishDate | 2021-06-01 |
publisher | Copernicus Publications |
record_format | Article |
series | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
spelling | doaj.art-e64b794a156e498da7d2338c2d64f2cf2022-12-21T20:33:00ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342021-06-01XLIII-B3-202160360810.5194/isprs-archives-XLIII-B3-2021-603-2021AUTOMATED STRUCTURAL FOREST CHANGES USING LIDAR POINT CLOUDS AND GIS ANALYSESA. Novo0H. González-Jorge1J. Martínez-Sánchez2J. M. Fernández-Alonso3H. Lorenzo4Geotech-Group, CINTECX, Department of Natural Resources and Environmental Engineering School of Mining Engineering, University of Vigo, 36310, Vigo, SpainPhysics Engineering Lab, School of Aerospace Engineering, University of Vigo, 32004, Ourense, SpainGeotech-Group, CINTECX, Department of Natural Resources and Environmental Engineering School of Mining Engineering, University of Vigo, 36310, Vigo, SpainLourizán Forest Research Center Xunta de Galicia, P.O. Box 127, 36080 Pontevedra, SpainGeotech-Group, CINTECX, Department of Natural Resources and Environmental Engineering, School of Forestry Engineering, University of Vigo, 36005 Pontevedra, Spain<p>Forest spatial structure describes the relationships among different species in the same forest community. Automation in the monitoring of the structural forest changes and forest mapping is one of the main utilities of applications of modern geoinformatics methods. The obtaining objective information requires the use of spatial data derived from photogrammetry and remote sensing. This paper investigates the possibility of applying light detection and ranging (LiDAR) point clouds and geographic information system (GIS) analyses for automated mapping and detection changes in vegetation structure during a year of study. The research was conducted in an area of the Ourense Province (NWSpain). The airborne laser scanning (ALS) data, acquired in August 2019 and June of 2020, reveal detailed changes in forest structure. Based on ALS data the vegetation parameters will be analysed.</p><p>To study the structural behaviour of the tree vegetation, the following parameters are used in each one of the sampling areas: (1) Relationship between the tree species present and their stratification; (2) Vegetation classification in fuel types; (3) Biomass (Gi); (4) Number of individuals per area; and (5) Canopy cover fraction (CCF). Besides, the results were compared with the ground truth data recollected in the study area.</p><p>The development of a quantitative structural model based on Aerial Laser Scanning (ALS) point clouds was proposed to accurately estimate tree attributes automatically and to detect changes in forest structure. Results of statistical analysis of point cloud show the possibility to use UAV LiDAR data to characterize changes in the structure of vegetation.</p>https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2021/603/2021/isprs-archives-XLIII-B3-2021-603-2021.pdf |
spellingShingle | A. Novo H. González-Jorge J. Martínez-Sánchez J. M. Fernández-Alonso H. Lorenzo AUTOMATED STRUCTURAL FOREST CHANGES USING LIDAR POINT CLOUDS AND GIS ANALYSES The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
title | AUTOMATED STRUCTURAL FOREST CHANGES USING LIDAR POINT CLOUDS AND GIS ANALYSES |
title_full | AUTOMATED STRUCTURAL FOREST CHANGES USING LIDAR POINT CLOUDS AND GIS ANALYSES |
title_fullStr | AUTOMATED STRUCTURAL FOREST CHANGES USING LIDAR POINT CLOUDS AND GIS ANALYSES |
title_full_unstemmed | AUTOMATED STRUCTURAL FOREST CHANGES USING LIDAR POINT CLOUDS AND GIS ANALYSES |
title_short | AUTOMATED STRUCTURAL FOREST CHANGES USING LIDAR POINT CLOUDS AND GIS ANALYSES |
title_sort | automated structural forest changes using lidar point clouds and gis analyses |
url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2021/603/2021/isprs-archives-XLIII-B3-2021-603-2021.pdf |
work_keys_str_mv | AT anovo automatedstructuralforestchangesusinglidarpointcloudsandgisanalyses AT hgonzalezjorge automatedstructuralforestchangesusinglidarpointcloudsandgisanalyses AT jmartinezsanchez automatedstructuralforestchangesusinglidarpointcloudsandgisanalyses AT jmfernandezalonso automatedstructuralforestchangesusinglidarpointcloudsandgisanalyses AT hlorenzo automatedstructuralforestchangesusinglidarpointcloudsandgisanalyses |