Uncertain Asymptotic Stability Analysis of a Fractional-Order System with Numerical Aspects

We apply known special functions from the literature (and these include the Fox <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">H</mi><mo>–</m...

Full description

Bibliographic Details
Main Authors: Safoura Rezaei Aderyani, Reza Saadati, Donal O’Regan, Fehaid Salem Alshammari
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/6/904
_version_ 1797240169547431936
author Safoura Rezaei Aderyani
Reza Saadati
Donal O’Regan
Fehaid Salem Alshammari
author_facet Safoura Rezaei Aderyani
Reza Saadati
Donal O’Regan
Fehaid Salem Alshammari
author_sort Safoura Rezaei Aderyani
collection DOAJ
description We apply known special functions from the literature (and these include the Fox <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">H</mi><mo>–</mo></mrow></semantics></math></inline-formula>function, the exponential function, the Mittag-Leffler function, the Gauss Hypergeometric function, the Wright function, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">G</mi><mo>–</mo></mrow></semantics></math></inline-formula>function, the Fox–Wright function and the Meijer <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">G</mi><mo>–</mo></mrow></semantics></math></inline-formula>function) and fuzzy sets and distributions to construct a new class of control functions to consider a novel notion of stability to a fractional-order system and the qualified approximation of its solution. This new concept of stability facilitates the obtention of diverse approximations based on the various special functions that are initially chosen and also allows us to investigate maximal stability, so, as a result, enables us to obtain an optimal solution. In particular, in this paper, we use different tools and methods like the Gronwall inequality, the Laplace transform, the approximations of the Mittag-Leffler functions, delayed trigonometric matrices, the alternative fixed point method, and the variation of constants method to establish our results and theory.
first_indexed 2024-04-24T18:03:10Z
format Article
id doaj.art-e6552e1d715941ca9cd8645c0f2f791c
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-04-24T18:03:10Z
publishDate 2024-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-e6552e1d715941ca9cd8645c0f2f791c2024-03-27T13:53:16ZengMDPI AGMathematics2227-73902024-03-0112690410.3390/math12060904Uncertain Asymptotic Stability Analysis of a Fractional-Order System with Numerical AspectsSafoura Rezaei Aderyani0Reza Saadati1Donal O’Regan2Fehaid Salem Alshammari3School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 13114-16846, IranSchool of Mathematics, Iran University of Science and Technology, Narmak, Tehran 13114-16846, IranSchool of Mathematical and Statistical Sciences, University of Galway, University Road, H91 TK33 Galway, IrelandDepartment of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi ArabiaWe apply known special functions from the literature (and these include the Fox <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">H</mi><mo>–</mo></mrow></semantics></math></inline-formula>function, the exponential function, the Mittag-Leffler function, the Gauss Hypergeometric function, the Wright function, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">G</mi><mo>–</mo></mrow></semantics></math></inline-formula>function, the Fox–Wright function and the Meijer <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">G</mi><mo>–</mo></mrow></semantics></math></inline-formula>function) and fuzzy sets and distributions to construct a new class of control functions to consider a novel notion of stability to a fractional-order system and the qualified approximation of its solution. This new concept of stability facilitates the obtention of diverse approximations based on the various special functions that are initially chosen and also allows us to investigate maximal stability, so, as a result, enables us to obtain an optimal solution. In particular, in this paper, we use different tools and methods like the Gronwall inequality, the Laplace transform, the approximations of the Mittag-Leffler functions, delayed trigonometric matrices, the alternative fixed point method, and the variation of constants method to establish our results and theory.https://www.mdpi.com/2227-7390/12/6/904stability resultsspecial aggregate mapsnumerical method
spellingShingle Safoura Rezaei Aderyani
Reza Saadati
Donal O’Regan
Fehaid Salem Alshammari
Uncertain Asymptotic Stability Analysis of a Fractional-Order System with Numerical Aspects
Mathematics
stability results
special aggregate maps
numerical method
title Uncertain Asymptotic Stability Analysis of a Fractional-Order System with Numerical Aspects
title_full Uncertain Asymptotic Stability Analysis of a Fractional-Order System with Numerical Aspects
title_fullStr Uncertain Asymptotic Stability Analysis of a Fractional-Order System with Numerical Aspects
title_full_unstemmed Uncertain Asymptotic Stability Analysis of a Fractional-Order System with Numerical Aspects
title_short Uncertain Asymptotic Stability Analysis of a Fractional-Order System with Numerical Aspects
title_sort uncertain asymptotic stability analysis of a fractional order system with numerical aspects
topic stability results
special aggregate maps
numerical method
url https://www.mdpi.com/2227-7390/12/6/904
work_keys_str_mv AT safourarezaeiaderyani uncertainasymptoticstabilityanalysisofafractionalordersystemwithnumericalaspects
AT rezasaadati uncertainasymptoticstabilityanalysisofafractionalordersystemwithnumericalaspects
AT donaloregan uncertainasymptoticstabilityanalysisofafractionalordersystemwithnumericalaspects
AT fehaidsalemalshammari uncertainasymptoticstabilityanalysisofafractionalordersystemwithnumericalaspects