Equação de freamento contínuo na modelagem de problemas de transporte de íons

Considera-se a equação de freamento continuo, que é uma parte da equação de Fokker-Planck que descreve o processo de transporte de íons acelerados em corpo sólido na presença de forte espalhamento para a frente. Demonstra-se que as soluções desta equação satisfazem as leis da conservação do número d...

Full description

Bibliographic Details
Main Authors: Igor Mozolevski, Lisandra de Oliveira Sauer
Format: Article
Language:English
Published: Universidade Federal do Rio Grande 2007-12-01
Series:Vetor
Subjects:
Online Access:https://ojs2.furg.br/index.php?journal=vetor&page=article&op=view&path[]=367
Description
Summary:Considera-se a equação de freamento continuo, que é uma parte da equação de Fokker-Planck que descreve o processo de transporte de íons acelerados em corpo sólido na presença de forte espalhamento para a frente. Demonstra-se que as soluções desta equação satisfazem as leis da conservação do número de partículas no fluxo e da conservação da energia depositada. Com o método das características constrói-se a solução do problema de valores de fronteira e várias propriedades desta são examinadas. Diferentes algorítmos de métodos de diferenças finitas e de elementos finitos descontínuos são examinados do ponto de vista da convergência, positividade e cumprimento das leis de conservação para a solução numérica do problema. Palavras-Chave: teoria linear de transporte, problema de valor de contorno, elementos finitos, diferenças finitas, implantação iônica
ISSN:0102-7352
2358-3452