Necessary and sufficient Tauberian conditions under which convergence follows from $A^{r,\delta}$ summability

Let $x=(x_{mn})$ be a double sequence of real or complex numbers. The $A^{r,\delta}$-transform of a sequence $(x_{mn})$ is defined by $$ (A^{r,\delta}x)_{mn}={\sigma^{r,\delta}_{mn}(x)}=\frac{1}{(m+1)(n+1)}\sum_{j=0}^{m}\sum_{k=0}^{n}(1+r^j)(1+\delta^k)x_{jk}, \ \ \ \ \ 0<r, \delta<1 $$ The $...

Full description

Bibliographic Details
Main Authors: Çagla Kambak, İbrahim Çanak
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2022-12-01
Series:Boletim da Sociedade Paranaense de Matemática
Online Access:https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/50823
_version_ 1797633608715862016
author Çagla Kambak
İbrahim Çanak
author_facet Çagla Kambak
İbrahim Çanak
author_sort Çagla Kambak
collection DOAJ
description Let $x=(x_{mn})$ be a double sequence of real or complex numbers. The $A^{r,\delta}$-transform of a sequence $(x_{mn})$ is defined by $$ (A^{r,\delta}x)_{mn}={\sigma^{r,\delta}_{mn}(x)}=\frac{1}{(m+1)(n+1)}\sum_{j=0}^{m}\sum_{k=0}^{n}(1+r^j)(1+\delta^k)x_{jk}, \ \ \ \ \ 0<r, \delta<1 $$ The $A^{r,*}$ and $A^{*,\delta}$ transformations are defined respectively by $$ (A^{r,*}x)_{mn}={\sigma^{r,*}_{mn}(x)}=\frac{1}{m+1}\sum_{j=0}^{m}(1+r^{j})x_{jn}, \ \ \ 0<r<1, $$ and $$ (A^{*,\delta}x)_{mn}={\sigma^{*,\delta}_{mn}(x)}=\frac{1}{n+1}\sum_{k=0}^{n}(1+\delta^{k})x_{mk},\ \ \ 0<\delta<1. $$ We say that $(x_{mn})$ is ($A^{r,\delta}$,1,1) summable to $l$ if $({\sigma^{r,\delta}_{mn}}(x))$ has a finite limit $l$. It is known that if $\lim_{m,n \to \infty }x_{mn}=l$ and $(x_{mn})$ is bounded, then the limit $\lim _{m,n \to \infty} \sigma_{mn}^{r,\delta}(x)=l$ exists. But the inverse of this implication is not true in general. Our aim is to obtain necessary and sufficient conditions for ($A^{r,\delta}$,1,1) summability method under which the inverse of this implication holds. Following Tauberian theorems for $(A^{r,\delta},1,1)$ summability method, we also introduce $A^{r,*}$ and $A^{*,\delta}$ transformations of double sequences and obtain Tauberian theorems for the $(A^{r,*},1,0)$ and $(A^{*,\delta},0,1)$ summability methods.
first_indexed 2024-03-11T11:56:18Z
format Article
id doaj.art-e66d2ef4557f4022ad9fd94f895364d7
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-03-11T11:56:18Z
publishDate 2022-12-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-e66d2ef4557f4022ad9fd94f895364d72023-11-08T19:10:29ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882022-12-014110.5269/bspm.50823Necessary and sufficient Tauberian conditions under which convergence follows from $A^{r,\delta}$ summabilityÇagla Kambak0İbrahim Çanak1Ege UniversityEge University Let $x=(x_{mn})$ be a double sequence of real or complex numbers. The $A^{r,\delta}$-transform of a sequence $(x_{mn})$ is defined by $$ (A^{r,\delta}x)_{mn}={\sigma^{r,\delta}_{mn}(x)}=\frac{1}{(m+1)(n+1)}\sum_{j=0}^{m}\sum_{k=0}^{n}(1+r^j)(1+\delta^k)x_{jk}, \ \ \ \ \ 0<r, \delta<1 $$ The $A^{r,*}$ and $A^{*,\delta}$ transformations are defined respectively by $$ (A^{r,*}x)_{mn}={\sigma^{r,*}_{mn}(x)}=\frac{1}{m+1}\sum_{j=0}^{m}(1+r^{j})x_{jn}, \ \ \ 0<r<1, $$ and $$ (A^{*,\delta}x)_{mn}={\sigma^{*,\delta}_{mn}(x)}=\frac{1}{n+1}\sum_{k=0}^{n}(1+\delta^{k})x_{mk},\ \ \ 0<\delta<1. $$ We say that $(x_{mn})$ is ($A^{r,\delta}$,1,1) summable to $l$ if $({\sigma^{r,\delta}_{mn}}(x))$ has a finite limit $l$. It is known that if $\lim_{m,n \to \infty }x_{mn}=l$ and $(x_{mn})$ is bounded, then the limit $\lim _{m,n \to \infty} \sigma_{mn}^{r,\delta}(x)=l$ exists. But the inverse of this implication is not true in general. Our aim is to obtain necessary and sufficient conditions for ($A^{r,\delta}$,1,1) summability method under which the inverse of this implication holds. Following Tauberian theorems for $(A^{r,\delta},1,1)$ summability method, we also introduce $A^{r,*}$ and $A^{*,\delta}$ transformations of double sequences and obtain Tauberian theorems for the $(A^{r,*},1,0)$ and $(A^{*,\delta},0,1)$ summability methods. https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/50823
spellingShingle Çagla Kambak
İbrahim Çanak
Necessary and sufficient Tauberian conditions under which convergence follows from $A^{r,\delta}$ summability
Boletim da Sociedade Paranaense de Matemática
title Necessary and sufficient Tauberian conditions under which convergence follows from $A^{r,\delta}$ summability
title_full Necessary and sufficient Tauberian conditions under which convergence follows from $A^{r,\delta}$ summability
title_fullStr Necessary and sufficient Tauberian conditions under which convergence follows from $A^{r,\delta}$ summability
title_full_unstemmed Necessary and sufficient Tauberian conditions under which convergence follows from $A^{r,\delta}$ summability
title_short Necessary and sufficient Tauberian conditions under which convergence follows from $A^{r,\delta}$ summability
title_sort necessary and sufficient tauberian conditions under which convergence follows from a r delta summability
url https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/50823
work_keys_str_mv AT caglakambak necessaryandsufficienttauberianconditionsunderwhichconvergencefollowsfromardeltasummability
AT ibrahimcanak necessaryandsufficienttauberianconditionsunderwhichconvergencefollowsfromardeltasummability