Enhancing BCI-Based Emotion Recognition Using an Improved Particle Swarm Optimization for Feature Selection
Electroencephalogram (EEG) signals have been widely used in emotion recognition. However, the current EEG-based emotion recognition has low accuracy of emotion classification, and its real-time application is limited. In order to address these issues, in this paper, we proposed an improved feature s...
Những tác giả chính: | Zina Li, Lina Qiu, Ruixin Li, Zhipeng He, Jun Xiao, Yan Liang, Fei Wang, Jiahui Pan |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
MDPI AG
2020-05-01
|
Loạt: | Sensors |
Những chủ đề: | |
Truy cập trực tuyến: | https://www.mdpi.com/1424-8220/20/11/3028 |
Những quyển sách tương tự
-
Past, Present, and Future of EEG-Based BCI Applications
Bằng: Kaido Värbu, et al.
Được phát hành: (2022-04-01) -
Enhancing EEG-Based Mental Stress State Recognition Using an Improved Hybrid Feature Selection Algorithm
Bằng: Ala Hag, et al.
Được phát hành: (2021-12-01) -
A unified fisher’s ratio learning method for spatial filter optimization
Bằng: Li, Xinyang, et al.
Được phát hành: (2018) -
A Strong and Simple Deep Learning Baseline for BCI Motor Imagery Decoding
Bằng: Yassine El Ouahidi, et al.
Được phát hành: (2024-01-01) -
BCI‐control and monitoring system for smart home automation using wavelet classifiers
Bằng: Amer Al‐Canaan, et al.
Được phát hành: (2022-04-01)