Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation

Metal-Chelating Peptides (MCPs), obtained from protein hydrolysates, present various applications in the field of nutrition, pharmacy, cosmetic etc. The separation of MCPs from hydrolysates mixture is challenging, yet, techniques based on peptide-metal ion interactions such as Immobilized Metal Ion...

Full description

Bibliographic Details
Main Authors: Rachel Irankunda, Jairo Andrés Camaño Echavarría, Cédric Paris, Loïc Stefan, Stéphane Desobry, Katalin Selmeczi, Laurence Muhr, Laetitia Canabady-Rochelle
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Separations
Subjects:
Online Access:https://www.mdpi.com/2297-8739/9/11/370
_version_ 1797463922925633536
author Rachel Irankunda
Jairo Andrés Camaño Echavarría
Cédric Paris
Loïc Stefan
Stéphane Desobry
Katalin Selmeczi
Laurence Muhr
Laetitia Canabady-Rochelle
author_facet Rachel Irankunda
Jairo Andrés Camaño Echavarría
Cédric Paris
Loïc Stefan
Stéphane Desobry
Katalin Selmeczi
Laurence Muhr
Laetitia Canabady-Rochelle
author_sort Rachel Irankunda
collection DOAJ
description Metal-Chelating Peptides (MCPs), obtained from protein hydrolysates, present various applications in the field of nutrition, pharmacy, cosmetic etc. The separation of MCPs from hydrolysates mixture is challenging, yet, techniques based on peptide-metal ion interactions such as Immobilized Metal Ion Affinity Chromatography (IMAC) seem to be efficient. However, separation processes are time consuming and expensive, therefore separation prediction using chromatography modelling and simulation should be necessary. Meanwhile, the obtention of sorption isotherm for chromatography modelling is a crucial step. Thus, Surface Plasmon Resonance (SPR), a biosensor method efficient to screen MCPs in hydrolysates and with similarities to IMAC might be a good option to acquire sorption isotherm. This review highlights IMAC experimental methodology to separate MCPs and how, IMAC chromatography can be modelled using transport dispersive model and input data obtained from SPR for peptides separation simulation.
first_indexed 2024-03-09T18:00:32Z
format Article
id doaj.art-e671935ce9fd4e18a0bcf4bf070e28c2
institution Directory Open Access Journal
issn 2297-8739
language English
last_indexed 2024-03-09T18:00:32Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Separations
spelling doaj.art-e671935ce9fd4e18a0bcf4bf070e28c22023-11-24T09:59:41ZengMDPI AGSeparations2297-87392022-11-0191137010.3390/separations9110370Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and SimulationRachel Irankunda0Jairo Andrés Camaño Echavarría1Cédric Paris2Loïc Stefan3Stéphane Desobry4Katalin Selmeczi5Laurence Muhr6Laetitia Canabady-Rochelle7Université de Lorraine, CNRS, LRGP, F-54000 Nancy, FranceUniversité de Lorraine, CNRS, LRGP, F-54000 Nancy, FranceUniversité de Lorraine, LIBIO, F-54000 Nancy, FranceUniversité de Lorraine, CNRS, LCPM, F-54000 Nancy, FranceUniversité de Lorraine, LIBIO, F-54000 Nancy, FranceUniversité de Lorraine, CNRS, L2CM, F-54000 Nancy, FranceUniversité de Lorraine, CNRS, LRGP, F-54000 Nancy, FranceUniversité de Lorraine, CNRS, LRGP, F-54000 Nancy, FranceMetal-Chelating Peptides (MCPs), obtained from protein hydrolysates, present various applications in the field of nutrition, pharmacy, cosmetic etc. The separation of MCPs from hydrolysates mixture is challenging, yet, techniques based on peptide-metal ion interactions such as Immobilized Metal Ion Affinity Chromatography (IMAC) seem to be efficient. However, separation processes are time consuming and expensive, therefore separation prediction using chromatography modelling and simulation should be necessary. Meanwhile, the obtention of sorption isotherm for chromatography modelling is a crucial step. Thus, Surface Plasmon Resonance (SPR), a biosensor method efficient to screen MCPs in hydrolysates and with similarities to IMAC might be a good option to acquire sorption isotherm. This review highlights IMAC experimental methodology to separate MCPs and how, IMAC chromatography can be modelled using transport dispersive model and input data obtained from SPR for peptides separation simulation.https://www.mdpi.com/2297-8739/9/11/370chromatography modellingcomplexationIMACpeptideSPRseparation
spellingShingle Rachel Irankunda
Jairo Andrés Camaño Echavarría
Cédric Paris
Loïc Stefan
Stéphane Desobry
Katalin Selmeczi
Laurence Muhr
Laetitia Canabady-Rochelle
Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation
Separations
chromatography modelling
complexation
IMAC
peptide
SPR
separation
title Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation
title_full Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation
title_fullStr Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation
title_full_unstemmed Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation
title_short Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation
title_sort metal chelating peptides separation using immobilized metal ion affinity chromatography experimental methodology and simulation
topic chromatography modelling
complexation
IMAC
peptide
SPR
separation
url https://www.mdpi.com/2297-8739/9/11/370
work_keys_str_mv AT rachelirankunda metalchelatingpeptidesseparationusingimmobilizedmetalionaffinitychromatographyexperimentalmethodologyandsimulation
AT jairoandrescamanoechavarria metalchelatingpeptidesseparationusingimmobilizedmetalionaffinitychromatographyexperimentalmethodologyandsimulation
AT cedricparis metalchelatingpeptidesseparationusingimmobilizedmetalionaffinitychromatographyexperimentalmethodologyandsimulation
AT loicstefan metalchelatingpeptidesseparationusingimmobilizedmetalionaffinitychromatographyexperimentalmethodologyandsimulation
AT stephanedesobry metalchelatingpeptidesseparationusingimmobilizedmetalionaffinitychromatographyexperimentalmethodologyandsimulation
AT katalinselmeczi metalchelatingpeptidesseparationusingimmobilizedmetalionaffinitychromatographyexperimentalmethodologyandsimulation
AT laurencemuhr metalchelatingpeptidesseparationusingimmobilizedmetalionaffinitychromatographyexperimentalmethodologyandsimulation
AT laetitiacanabadyrochelle metalchelatingpeptidesseparationusingimmobilizedmetalionaffinitychromatographyexperimentalmethodologyandsimulation