Ultra-Low Frequency Eccentric Pendulum-Based Electromagnetic Vibrational Energy Harvester

With the development of low-power technology in electronic devices, the wireless sensor network shows great potential in applications in health tracing and ocean monitoring. These scenarios usually contain abundant low-frequency vibration energy, which can be collected through appropriate energy con...

Full description

Bibliographic Details
Main Authors: Mingxue Li, Huichao Deng, Yufeng Zhang, Kexin Li, Shijie Huang, Xiaowei Liu
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/11/11/1009
Description
Summary:With the development of low-power technology in electronic devices, the wireless sensor network shows great potential in applications in health tracing and ocean monitoring. These scenarios usually contain abundant low-frequency vibration energy, which can be collected through appropriate energy conversion architecture; thus, the common issue of limited battery life in wireless sensor devices could be solved. Traditional energy-converting structures such as the cantilever-beam type or spring-mass type have the problem of high working frequency. In this work, an eccentric pendulum-based electromagnetic vibration energy harvester is designed, analyzed, and verified with the finite element analysis method. The pendulum that contains alternative distributed magnets in the outer side works as a rotor and has the advantages of a simple structure and low center frequency. The structure size is well scalable, and the optimal output performance can be obtained by optimizing the coil thickness and width for a given diameter of the energy harvester. The simulation results show that the energy harvester could work in ultra-low frequencies of 0.2–3.0 Hz. A full-scale prototype of the energy harvester is manufactured and tested. The center working frequency is 2.0 Hz with an average output power of 8.37 mW, which has potential for application in driving low-power wireless sensor nodes.
ISSN:2072-666X